共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Chemel R.S. Sokhi Y. Yu G.D. Hayman K.J. Vincent A.J. Dore Y.S. Tang H.D. Prain B.E.A. Fisher 《Atmospheric environment (Oxford, England : 1994)》2010,44(24):2927-2939
A comprehensive ‘operational’ evaluation of the performance of the Community Multiscale Air Quality (CMAQ) modelling system version 4.6 was conducted in support of pollution assessment in the UK for the calendar year 2003. The model was run on multiple grids using one-way nests down to a horizontal resolution as fine as 5 km over the whole of the UK. The model performance was evaluated for pollutants with standards and limit values (e.g. O3, PM10) and species contributing to acidic and nitrogenous deposition (e.g. NH3, SO42–, NO3–, NH4+) against data from operational national monitoring networks. The key performance characteristics of the modelling system were found to be variable according to acceptance criteria and to depend on the type (e.g. urban, rural) and location of the sites, as well as on the time of the year. As regards the techniques that were used for ‘operational’ evaluation, performance generally complied with expected levels and ranged from good (e.g. O3, SO42–) to moderate (e.g. PM10, NO3–). At a few sites low correlations and large standard deviations for some species (e.g. SO2) suggest that these sites are subject to local factors (e.g. topography, emission sources) that are not well described in the model. Overall, the model tends to over predict O3 and under predict aerosol species (except SO42–). Discrepancies between predicted and observed concentrations may be due to a variety of intertwined factors, which include inaccuracies in meteorological predictions, chemical boundary conditions, temporal variability in emissions, and uncertainties in the treatment of gas and aerosol chemistry. Further work is thus required to investigate the respective contributions of such factors on the predicted concentrations. 相似文献
2.
P.L. Livingstone K. Magliano K. Gürer P.D. Allen K.M. Zhang Q. Ying B.S. Jackson A. Kaduwela M. Kleeman L.F. Woodhouse K. Turkiewicz L.W. Horowitz K. Scott D. Johnson C. Taylor G. O'Brien J. DaMassa B.E. Croes F. Binkowski D. Byun 《Atmospheric environment (Oxford, England : 1994)》2009,43(37):5971-5977
We investigated a two-week episode with high PM concentrations in California Central Valley during the Christmas–New Year of 2000–2001 using a modeling system that consists of a computationally efficient, 3-D photochemical–microphysical transport model, a mesoscale meteorological model, emission models, and an evaluation package. One hundred simulations were conducted with fine resolutions and observational constraints, to reproduce spatial and temporal features of observed PM concentrations and to understand the formation mechanism of the episode. Simulated PM concentrations consist of secondary inorganic components, mainly ammonium nitrate, and total carbon in areas with elevated concentrations in the accumulation mode, and consist of mainly dust and sea salt in the coarse mode. Simulated oxidants and nitrate were significantly elevated over the valley, and the latter showed much less amplitude than the former. Simulated PM concentrations were evaluated with observations systematically with spatially and temporally paired method, a more restrictive multivariate method (NMFROC), and a more flexible “gradient evaluation” method. The paired evaluation shows that high correlation coefficient (R = ~0.8) and low fractional error (FE = ~0.1) could be achieved at stations with elevated 24-h concentration of PM in the accumulation mode in some simulations. The NMFROC method was used to extract useful information from seemingly failed simulations. A “gradient evaluation” method is introduced here to extract additional information from simulations. We found that emission reductions of NOx and AVOC showed similar effects on percentage basis in different areas, and both are more effective than reducing NH3 for abating elevated concentrations of accumulation mode PM in California Central Valley during the winter episode. 相似文献
3.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization. 相似文献
4.
Chen LW Chow JC Doddridge BG Dickerson RR Ryan WF Mueller PK 《Journal of the Air & Waste Management Association (1995)》2003,53(8):946-956
Observations of the mass and chemical composition of particles less than 2.5 microm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4(2-)) and carbonaceous material in PM2.5 were each approximately 50% for cleaner air (PM2.5< 10 microg/m3) but changed to approximately 60% and approximately 20%, respectively, for more polluted air (PM2.5>30 microg/m3). This signifies the role of SO4(2-) in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4(2-) is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 +/- 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached approximately 45 microg/m3, visual range dropped to approximately 5 km, and aerosol water likely contributed to approximately 40% of the light extinction coefficient. 相似文献
5.
Toshiharu Sugiyama Keisuke Nansai Susumu Tohno Kouhei Yamamoto 《Atmospheric environment (Oxford, England : 1994)》2009,43(4):759-768
To elucidate the macro-structure of the PM2.5 emissions generated by Japan's economic activities, this paper presents an emission inventory of primary particles of PM2.5 with high sectoral resolution based on the Japanese Input–Output Tables, comprising some 400 sectors. These primary PM2.5 emissions were estimated by multiplying the estimated energy consumption associated with each fuel type by a PM10 emission factor incorporating the technological level of dust collection in each sector and the mass ratio of PM2.5 to PM10. Non-energy emissions from agricultural open burning were also determined. Total PM2.5 emissions in 2000 were 252 kt, 49% of which were due to mobile emission sources. Changes in total PM2.5 emissions between 1990 and 2000 were also calculated. This showed that a substantial increase in energy sector emissions due to rising coal consumption was offset by a sharp decline in emissions from road vehicles and shipping vessels, resulting in an overall decrease in total emissions. In addition, the emissions induced by economic demand in each sector were quantified by means of input–output analysis, which revealed that demand for construction, foods and communications and services constituted the principal causes of real domestic emissions. An assessment of sectoral contributions to PM2.5 emissions that takes into account the effects of human exposure, expressed as external costs, suggests that the contribution of transportation is greater than indicated on the grounds of direct emissions alone. 相似文献
6.
Mai Khiem Ryozo Ooka Hiroshi Hayami Hiroshi Yoshikado Hong Huang Yoichi Kawamoto 《Atmospheric environment (Oxford, England : 1994)》2010,44(35):4463-4473
We have assessed the contributions of individual physical and chemical atmospheric processes on ozone formation under different weather conditions during a typical summer month (August 2005) using the MM5/CMAQ modelling system. We found that the ozone episodes in the Kanto region are dominated by three major patterns, of which Patterns I and II are regular summertime pressure patterns with a 26% and 16% frequency of occurrence, respectively. A process analysis at two typical sites in the Kanto region – one located in the central region of Tokyo and the other located in the rural areas of Kanto – indicates that ozone formation is mainly controlled by advection, vertical diffusion, dry deposition, and chemical processes. The ground-level ozone concentrations are enhanced mainly by the vertical mixing of ozone-rich air from aloft, whereas the dry deposition and chemical processes mainly deplete ozone. By investigating the effects of each process under different weather conditions, we found that the significant decrease in ozone removal due to the chemical and advection processes under conditions of high stagnation is the most important cause of the enhanced levels of ozone in the central region of Tokyo. The results of this study can contribute to a better understanding of ozone formation in the Kanto region, and they may be valuable for local policy makers for further development planning. 相似文献
7.
《Atmospheric environment (Oxford, England : 1994)》2007,41(6):1237-1250
In this paper, an integrated MM5–CMAQ modeling approach was employed to investigate the PM10 air pollution issue in Beijing, China, with a focus on assessing pollution contributions from surrounding provinces. A 2-level-nested grid domain with spatial resolutions of 36 and 12 km was designed for the study region. Seven monitoring stations across Beijing municipality were selected to provide hourly PM10 measurement data. The months of January, April, July and October in 2002 were taken as target periods for model performance evaluation. Five emission scenarios were designed and run in order to quantitatively assess the trans-boundary PM10 contributions. The results show that, while Beijing needs to take positive steps to reduce its own pollution emissions, much effort should also be placed on demanding more pollution reduction and better environmental performance from surrounding provinces. 相似文献
8.
Li-Ying Hsieh Su-Ching Kuo Chien-Lung Chen Ying I. Tsai 《Atmospheric environment (Oxford, England : 1994)》2009,43(29):4396-4406
The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16–17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5–100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2–82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution period to 28.08% during the PM episode, favoring dicarboxylic acid formation in the nuclei mode. The evidence suggests stronger formation strength and contribution potential exists for dicarboxylic acids than for inorganic salts in nanoscale particles, especially in PM episode aerosol. 相似文献
9.
为深入了解膜生物反应器(MBR)中微生物代谢产物(SMP)的生成降解以及利用情况,研究了以NH4Cl为惟一能源物质的硝化MBR反应器中SMP浓度以及分子量(MW)变化情况,并运用活性污泥模型3(ASM3)准确地计算出微生物利用底物相关的溶解性产物(UAP)和微生物死亡相关的溶解性产物(BAP)的量分别是多少,最终证明硝化系统中产生的SMP可作为能源物质被异养菌进一步利用,而且相较于BAP而言UAP更易于被生物降解,得出结论BAP是SMP中的主要污染成分。 相似文献
10.
Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days 总被引:1,自引:0,他引:1
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days. 相似文献
11.
Shen Z Cao J Liu S Zhu C Wang X Zhang T Xu H Hu T 《Journal of the Air & Waste Management Association (1995)》2011,61(11):1150-1159
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m. 相似文献
12.
Zhuming Ying Xuexi Tie Guohui Li 《Atmospheric environment (Oxford, England : 1994)》2009,43(4):851-859
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors. 相似文献
13.
Tomato-processing wastewaters are typical of slowly biodegradable high strength wastewaters generated from the food canning industry. Three different samples of influent and three samples of anaerobic effluents corresponding to the three influents collected from an on-site pilot-scale anaerobic/aerobic system were characterized using respirometric methods. Respirometric studies demonstrated that the pretreatment in the anaerobic reactor of the pilot-scale system increased the readily biodegradable fraction from an average of 40% of the SCOD in the influent to 50% of the SCOD in the anaerobic effluent, improved kinetics from an average micro(max) of 1.5d(-1) in the influent to 3.5d(-1) in the anaerobic effluent, and eliminated nutrient deficiency. Furthermore, the system was calibrated and simulated by application of wastewater characterization and biokinetic data derived form respirometric tests of influent and anaerobic effluent in Activated Sludge Model no.1 (ASM1). 相似文献
14.
Nikoonahad Ali Naserifar Razi Alipour Vali Poursafar Ayub Miri Mohammad Ghafari Hamid Reza Abdolahnejad Ali Nemati Sepideh Mohammadi Amir 《Environmental science and pollution research international》2017,24(27):21791-21796
Environmental Science and Pollution Research - The aims of this study were to assess the health impact of PM10 on inhabitants and to investigate the trend of PM10 concentrations in Ilam, Iran, from... 相似文献
15.
16.
Paul A. Solomon Karen L. Magliano 《Journal of the Air & Waste Management Association (1995)》2013,63(9):174-185
ABSTRACT The 1995 Integrated Monitoring Study (IMS95) is part of the Phase 1 planning efforts for the California Regional PM10/PM2.5 Air Quality Study. Thus, the overall objectives of IMS95 are to (1) fill information gaps needed for planning an effective field program later this decade; (2) develop an improved conceptual model for pollution buildup (PM10, PM2.5, and aerosol precursors) in the San Joaquin Valley; (3) develop a uniform air quality, meteorological, and emissions database that can be used to perform initial evaluations of aerosol and fog air quality models; and (4) provide early products that can be used to help with the development of State Implementation Plans for PM10. Consideration of the new particulate matter standards were also included in the planning and design of IMS95, although they were proposed standards when IMS95 was in the planning process. 相似文献
17.
《Atmospheric environment (Oxford, England : 1994)》2007,41(4):837-853
A high ozone event in the Houston–Galveston–Brazoria area was utilized to study the shortcomings of the current air quality models. To improve the baseline simulations with the Comprehensive Air quality Model with Extensions (CAMx) for developing the state implementation plan, the Texas Commission on Environmental Quality (TCEQ) imputed emissions of highly reactive volatile organic compounds (HRVOCs) by scaling the amount of fugitive emissions of olefins to co-emitted NOx from selected point sources, effectively multiplying by 3–12 times over the regular inventory values. In this paper, CAMx and the Community Multiscale Air Quality (CMAQ) model were used to determine if the imputed HRVOC emissions were consistent with the observed atmospheric conditions. With the base emissions, CMAQ and CAMx both with the Carbon-Bond 4 (CB-4) mechanism simulated similar ozone concentrations. But with the imputed HRVOC emissions, CMAQ predicted lower ozone peaks than CAMx in the vicinity and downwind of the Ship Channel and other highly HRVOC-rich areas. Based on analyses of sensitivity simulations of CMAQ with different emission inputs and vertical diffusion algorithms in the model, we found that the modeled atmosphere lacked reactivity to produce the observed high ozone event. Although the imputed HRVOC emissions improved ozone prediction at the surface sites, but the ethylene concentrations were not consistent with the measurements at the super sites (La Porte and Clinton) and by NOAA aircraft. Several sensitivity tests designed to provide additional radicals into the system and other research results suggested that the lack of reactivity may need to be corrected by targeted, and probably of episodic, increase of HRVOC emissions, from the sources in the Houston Ship Channel. Additional investigation of the ozone production efficiency for different chemical mechanisms is necessary to pinpoint the emissions uncertainty issues. 相似文献
18.
Tolga Elbir Nizamettin Mangir Melik Kara Sedef Simsir Tuba Eren Seda Ozdemir 《Atmospheric environment (Oxford, England : 1994)》2010,44(4):441-454
A decision support system has been developed for urban air quality management in the metropolitan area of Istanbul. The system is based on CALMET/CALPUFF dispersion modeling system, digital maps, and related databases to estimate the emissions and spatial distribution of air pollutants with the help of a GIS software. The system estimates ambient air pollution levels at high temporal and spatial resolutions and enables mapping of emissions and air quality levels. Mapping and scenario results can be compared with air quality limits. Impact assessment of air pollution abatement measures can also be carried out. 相似文献
19.
《Atmospheric environment (Oxford, England : 1994)》2007,41(21):4349-4365
In this article, numerical simulations and observational analyses have been made for the aerosol episode that occurred over the Pearl River Delta (PRD) region in China during 1–3 November 2003. An air quality modeling system that consisted of the mesoscale model MM5, chemical transport model MODELS-3/CMAQ, and air pollutant emission model SMOKE, was employed. Studies have shown that this particulate matter (PM) pollution episode was apparently associated with the activity of tropical cyclone (TC) Melor. Model simulations revealed that Melor spawned this PM episode through dynamic and thermodynamic processes. The strong compensating subsidence induced by Melor's peripheral circulations created favorable meteorological conditions that enhanced local aerosol pollution. This strong downward motion produced significant adiabatic warming (2–4 °C daily) and dramatic drying in the low-level troposphere over the PRD. As a result, the PRD region was blanketed with a dry and warm air layer that strengthened the static stability of the lower troposphere. The descending motion also tended to dramatically lower the heights of the planetary boundary layer (PBL) through its dynamic effect. The fair weather created by this synoptic pattern further intensified the nocturnal temperature inversions through enhanced radiative cooling. All of these factors promoted a stagnant local atmosphere with very light winds near the surface. The horizontal and vertical dispersions of locally emitted aerosol particles were largely suppressed, leading to the accumulation of large amounts of PMs near local emission sources in the PRD region. As Melor drew near, changes in surface winds strengthened the horizontal transport of aerosol particles from inland sources to the area of Hong Kong downstream. This horizontal advection greatly contributed to the high PM10 (particulate matters less than 10 μm in diameters) concentrations in Hong Kong. 相似文献
20.
Olivier Favez Hélène Cachier Jean Sciare Roland Sarda-Estève Laurent Martinon 《Atmospheric environment (Oxford, England : 1994)》2009,43(22-23):3640-3644
Although particulate emissions from residential wood burning have become a subject of great scientific concern for a few years, data related to their impact on the air quality of large European urban centres are still missing. In the present study, we investigated the chemical and optical properties of fine (PM2.5) carbonaceous aerosols in Paris during the 2005 winter season in order to track the presence of wood burning emissions in such a large city. The use of a seven wavelength Aethalometer allowed us to document shortwave light absorption by brown-carbon-containing organic aerosols of biomass burning origin. In particular, a well-marked diurnal pattern of the spectral dependence of light absorption, with maxima during the night, could be observed every day of the campaign and attributed to wood burning emissions. Relatively high absorption Ångstrom exponents and WSOC/OC ratios (respectively 1.25 and 0.35 on average for the period of study) also indicated the importance of biomass burning aerosols in the Paris atmosphere in winter. Finally, a rough estimate of the contribution of wood burning carbonaceous aerosols to PM2.5 could be achieved. This contribution was found to be as high as 20 ± 10% on average at the Paris background site investigated here. 相似文献