首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time we investigated the effect of solar irradiation upon the heterogeneous ozonation of adsorbed 3,4,5-trimethoxybenzaldehyde on solid surface. Light-induced heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde adsorbed on silica particles were performed and the consecutive reaction products were identified. At an ozone mixing ratio of 250 ppb, the loss of 3,4,5-trimethoxybenzaldehyde ranged from 1.0 · 10?6 s?1 in the dark to 2.9 · 10?5 s?1 under light irradiation. Such large enhancement of 29 times clearly shows the importance of light (λ > 300 nm) during the heterogeneous ozonolysis on organic coated particles.The reaction products identified in this study (3,4,5-trimethoxybenzoic acid, syringic acid, methyl 3,4,5-trimethoxybenzoate) absorb light in the spectral window (λ > 300 nm) which implies that light-induced heterogeneous ozone processing can have an influence on the aerosol surfaces by changing their physico-chemical properties.The main identified product of the heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde under dark conditions and in presence of light was 3,4,5-trimethoxybenzoic acid. For this reason we estimated the carbon yield of 3,4,5-trimethoxybenzoic acid. Carbon yields of 3,4,5-trimethoxybenzoic acid decreased with increasing ozone mixing ratio; from 40% at 250 ppb to 15% at ≥2.5 ppm under dark conditions. At ozone mixing ratio (250 ppb–1 ppm), carbon yields of 3,4,5-trimethoxybenzaldehyde are relatively higher in the experiment under dark condition than under simulated solar light.  相似文献   

2.
Measurements carried out in Paris Magenta railway station in April–May 2006 underlined a repeatable diurnal cycle of aerosol concentrations and optical properties. The average daytime PM10 and PM2.5 concentrations in such a confined space were approximately 5–30 times higher than those measured in Paris streets. Particles are mainly constituted of dust, with high concentrations of iron and other metals, but are also composed of black and organic carbon. Aerosol levels are linked to the rate at which rain and people pass through the station. Concentrations are also influenced by ambient air from the nearby streets through tunnel ventilation. During daytime approximately 70% of aerosol mass concentrations are governed by coarse absorbing particles with a low Angström exponent (~0.8) and a low single-scattering albedo (~0.7). The corresponding aerosol density is about 2 g cm?3 and their complex refractive index at 355 nm is close to 1.56–0.035 i. The high absorption properties are linked to the significant proportion of iron oxides together with black carbon in braking systems. During the night, particles are mostly submicronic, thus presenting a greater Angström exponent (~2). The aerosol density is lower (1.8 g cm?3) and their complex refractive index presents a lower imaginary part (1.58–0.013 i), associated to a stronger single-scattering albedo (~0.85–0.90), mostly influenced by the ambient air. For the first time we have assessed the emission (deposition) rates in an underground station for PM10, PM2.5 and black carbon concentrations to be 3314 ± 781(?1164 ± 160), 1186 ± 358(?401 ± 66) and 167 ± 46(?25 ± 9) μg m?2 h?1, respectively.  相似文献   

3.
The kinetics of the heterogeneous reaction between gaseous HCHO and TiO2/SiO2 mineral coatings were investigated using a coated-wall flow tube to mimic HCHO loss on mineral aerosol and TiO2 coated depolluting urban surfaces. The measured uptake kinetics were strongly enhanced when the flow tube was irradiated with 340–420 nm UV light with an irradiance of 1.45 mW cm?2. The associated BET uptake coefficients ranged from (3.00 ± 0.45) × 10?9 to (2.26 ± 0.34) × 10?6 and were strongly dependent on HCHO initial concentration, relative humidity, temperature, and TiO2 content in the mineral coating, which ranged from 3.5 to 32.5 ppbv, 6–70%, 278–303 K, and 1–100 %wt, respectively. The measured kinetics were well described using a Langmuir–Hinshelwood type formalism. The estimated uptake coefficients were used to discuss the importance of heterogeneous HCHO surface loss, in terms of deposition lifetimes, as compared to major homogeneous gas-phase losses such as OH reaction and photolysis. It is found that deposition may compete with gas-phase removal of HCHO in a dense urban environment if more than 10% of the urban surface is covered with TiO2 treated material.  相似文献   

4.
Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5–10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194–1059), 4-methylcatechol (204–1188) and ozone (93–531). The ozone and methylcatechol concentrations were followed by UV photometry and GC–FID (Gas chromatography–Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm?3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.  相似文献   

5.
This work deals with the kinetic study of the reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene, adsorbed on model particles. Experiments were performed at room temperature and atmospheric pressure, using a quasi-static flow reactor in the absence of light. Compounds were extracted from particles using pressurized fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different O3 concentrations from which second order rate constants were calculated. The following rate constant values were obtained at 293 K: k(O3 + Pyrene) = (3.2 ± 0.7) × 10?16 cm3 molecule?1 s?1; k(O3 + 1OHP) = (7.7 ± 1.4) ×10 ?16 cm3 molecule?1 s?1; and k(O3 + 1NP) = (2.2 ± 0.5) × 10?17 cm3 molecule?1 s?1, for pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on silica particles. The variation in the rate constants demonstrates the strong influence of the substituent (OH or NO2) on the heterogeneous reactivity of pyrene. The pyrene particulate concentration was also varied in order to check how this parameter may influence the experiments. Finally, oxidation products were investigated for all reactions and some were detected and identified for the first time for ozone heterogeneous reaction with pyrene adsorbed on particles.  相似文献   

6.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

7.
At a suburban location in southern Korea, the optical properties of the atmosphere were characterized over a horizontal light path of 1.5 km (in two ways) from 22 October to 19 November 2002. This was achieved by measuring light extinction with a long path differential optical absorption spectrometer system in the ultraviolet and visible wavelength region. The extinction coefficients were obtained relatively as a ratio of a target air spectrum to a defined reference spectrum measured over the same light path (290–760 nm). To assess the measured extinction coefficients, the extinction coefficients at 550 nm were compared to those measured with a commercial long-path transmissometer.To avoid the absorption of known gases (H2O, NO2, and O3), extinction coefficients at the spectral bands of 325, 394, 472, 550, 580, 680, and 753 nm, with 3 nm window widths, were selected and analyzed for the purpose of the study of the aerosol properties. Importantly, the atmospheric physical properties during the episodes (such as a biomass burning or a dust storm) were investigated by means of the Angstrom parameters and the mass ratio of fine-to-coarse particles. In addition, it was found that the Angstrom exponents decrease monotonously for relative humidity above 50%.  相似文献   

8.
Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug–Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m?2 s?1 around noon. An average fine particle flux of 0.05 ± 0.10 106 m?2 s?1 was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes.  相似文献   

9.
The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm?3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas–particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.  相似文献   

10.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

11.
Simultaneous measurements of aerosol absorption and scattering coefficients for the PM2.5 aerosols particles were done at Delhi during April 2008–March 2009 to estimate the aerosol single scattering albedo (SSA) and the Angstrom absorption exponents at the surface. The annual average SSA at 0.55 μm was found to be 0.70 ± 0.07 with only slight variations during the four seasons, summer (0.63 ± 0.06), monsoon (0.69 ± 0.07), winter (0.74 ± 0.03) and spring (0.72 ± 0.04). However, large variations in average absorption and scattering coefficients were seen during these four seasons. The average absorption coefficients during summer, monsoon, winter and spring were found to be 62.47 ± 21.27, 50.95 ± 43.61, 189.65 ± 85.94 and 90.65 ± 33.06 Mm?1 respectively. The corresponding scattering coefficients were 110.46 ± 36.15, 95.34 ± 49.46, 565.59 ± 274.59 and 236.56 ± 96.25 Mm?1. The Angstrom absorption exponent (ασ(abs)) remained close to unity throughout the year averaging at 1.02 ± 0.08, 1.02 ± 0.10, 1.04 ± 0.11, and 1.03 ± 0.05 during summer, monsoon, winter and spring seasons respectively, strongly indicating that the absorption at Delhi aerosol is mainly due to the abundance of black carbon of fossil fuel origin.  相似文献   

12.
To further understand the role of substrates on the heterogeneous reactions of polycyclic aromatic hydrocarbons, the reactions of ozone with anthracene adsorbed on different mineral oxides (SiO2, α-Al2O3 and α-Fe2O3) and on Teflon disc were investigated in dark at 20 °C. No reaction between ozone and anthracene on Teflon disc was observed when the ozone concentration was ~1.18 × 1014 molecules cm?3. The reactions on mineral oxides exhibited pseudo-first-order kinetics for anthracene loss, and the pseudo-first-order rate constant (k1,obs) displayed a Langmuir–Hinshelwood dependence on the gas-phase ozone concentration. The adsorption equilibrium constants for ozone (KO3) on SiO2-1, SiO2-2, α-Al2O3 and α-Fe2O3 were (0.81 ± 0.26) × 10?15 cm3, (2.83 ± 1.17) × 10?15 cm3, (2.48 ± 0.77) × 10?15 cm3 and (1.66 ± 0.45) × 10?15 cm3, respectively; and the maximum pseudo-first-order rate constant (k1,max) on these oxides were (0.385 ± 0.058) s?1, (0.101 ± 0.0138) s?1, (0.0676 ± 0.0086) s?1 and (0.0457 ± 0.004) s?1, respectively. Anthraquinone was identified as the main surface product of anthracene reacted with ozone. Comparison with previous research and the results obtained in this study suggest that the reactivity of anthracene with ozone and the lifetimes of anthracene adsorbed on mineral dust in the atmosphere are determined by the nature of the substrate.  相似文献   

13.
The formation of secondary organic aerosol (SOA) produced from linalool ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted under room temperature (22–23 °C) and air exchange rate of 0.67 h?1. An effort was made to maintain the product of the concentrations of the two reagents constant. The results suggest that under the conditions when the product of the two reagent concentrations was constant, the relative concentrations play an important role in determining the total SOA formed. A combination of concentrations somewhere in ozone limiting region will produce the maximum SOA concentration. The measured reactive oxygen species (ROS) concentrations at linalool and ozone concentrations relevant to prevailing indoor concentrations ranged from 0.71 to 2.53 nmol m?3 equivalents of H2O2. It was found that particle samples aged for 24 h lost a significant fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 15–69%. Compared with other terpene species like α-pinene that has one endocyclic unsaturated carbon bond, linalool was less efficient in potential SOA formation yields.  相似文献   

14.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

15.
In this study, we present how an indoor aerosol model can be used to characterize particle emitter and predict influence of the source on indoor air quality. Particle size-resolved emission rates were quantified and the source’s influence on indoor air quality was estimated by using office model simulations. We measured particle emissions from three modern laser printers in a flow-through chamber. Measured parameters were used as input parameters for an indoor aerosol model, which we then used to quantify the particle emission rates. The same indoor aerosol model was used to simulate the effect of the particle emission source inside an office model. The office model consists of a mechanically ventilated empty room and the particle source. The aerosol from the ventilation air was a filtered urban background aerosol. The effect of the ventilation rate was studied using three different ventilation ratios 1, 2 and 3 h?1. According to the model, peak emission rates of the printers exceeded 7.0 × 108 s?1 (2.5 × 1012 h?1), and emitted mainly ultrafine particles (diameter less than 100 nm). The office model simulation results indicate that a print job increases ultrafine particle concentration to a maximum of 2.6 × 105 cm?3. Printer-emitted particles increased 6-h averaged particle concentration over eleven times compared to the background particle concentration.  相似文献   

16.
The state of mixture of light-absorbing carbonaceous particles was investigated in relation to light absorption properties using electron microscopic examinations, black carbon (BC) analyses of quartz filter by thermal/optical reflectance (TOR) method, measurements with two continuous light-absorbing photometers at a suburban site of Tsukuba, about 60 km northeast of Tokyo. The volume fraction of water-soluble material (?) in individual particles is important for assessing particulate light-absorbing and/or scattering of atmospheric aerosols. The values of ? in BC particles were evaluated by electron micrographs before and after dialysis (extraction) of water-soluble material. The mass absorption coefficient (MAC in units of m2 g?1) tended to increase with increasing the average ? in BC particles with the radius range of 0.05–0.5 μm. Thus, our results indicate that coatings of water-soluble material around BC particles can enhance the absorption of solar radiation. Moreover, the single scattering albedo (SSA) will increase because a large amount of coating material will scatter more light.  相似文献   

17.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

18.
Absolute rate coefficients for the gas-phase reactions of OH radical with 3-methylbutanal (k1), trans-2-methyl-2-butenal (k2), and 3-methyl-2-butenal (k3) have been obtained with the pulsed laser photolysis/laser-induced fluorescence technique. Gas-phase concentration of aldehydes was measured by UV absorption spectroscopy at 185 nm. Experiments were performed over the temperature range of 263–353 K at total pressures of helium between 46.2 and 100 Torr. No pressure dependence of all ki (i = 1–3) was observed at all temperatures. In contrast, a negative temperature dependence of ki (i.e., ki increases when temperature decreases) was observed in that T range. The resulting Arrhenius expressions (±2σ) are: k1(T) = (5.8 ± 1.7)×10?12 exp{(499 ± 94)/T} cm3 molecule?1 s?1, k2(T)=(6.9 ± 0.9)×10?12 exp{(526 ± 42)/T} cm3 molecule?1 s?1, k3(T)=(5.6 ± 1.2)×10?12 exp{(666 ± 54)/T} cm3 molecule?1 s?1.The tropospheric lifetimes derived from the above OH-reactivity trend are estimated to be higher for 3-methylbutanal than those for the unsaturated aldehydes. A comparison of the tropospheric removal of these aldehydes by OH radicals with other homogeneous degradation routes leads to the conclusion that this reaction can be the main homogeneous removal pathway. However, photolysis of these aldehydes in the actinic region (λ > 290 nm) could play an important role along the troposphere, particularly for 3-methyl-2-butenal. This process could compete with the OH reaction for 3-methylbutanal or be negligible for trans-2-methyl-2-butenal in the troposphere.  相似文献   

19.
Analyses of diurnal patterns of PM10 in Taipei City have been performed in this study at different daily ozone maximum concentrations (O3,max) from 1994 to 2003. In order to evaluate secondary aerosol formation at different ozone levels, CO was used as a tracer of primary aerosol, and O3,max was used as an index of photochemical activity. Results show that when O3,max exceeds 120 ppb, the highest photochemical formation of secondary aerosol can be found at 15:00 (local time). The produced secondary aerosol is estimated to contribute 30 μg m−3 (43%) of PM10 concentration, and about 77% of the estimated secondary PM10 is composed of PM2.5. The estimated maximum concentration of secondary aerosol occurs 2–3 h later than the maximum ozone concentration. As revealed in an O3 episode, PM10 and PM2.5 vary consistently with O3 at daytime, which suggests that they are mostly secondary aerosols produced from photochemical reactions. Data collected from Taipei aerosol supersite in 2002 indicates that for all O3 levels, summertime PM2.5 is composed of 23%, 20%, 9%, and 7% of organic carbon, sulfate, nitrate, and elemental carbon, respectively. Aerosol number and volume size spectra are dominated by submicron particles either from pollution transport or photochemical reactions. Secondary PM10 concentrations show increasing tendencies for the time between 15:00 and 19:00 from 1994–1996 to 2001–2003. This reveals that the abatement of secondary PM10 becomes more important after pronounced primary PM10 reduction in a metropolis.  相似文献   

20.
This study examined the impact of recirculation rates (7 and 14 h?1), ventilation rates (1 and 2 h?1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h?1 were significantly smaller than at a recirculation rate of 7 h?1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号