共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent discovery of bomb-related 36Cl at depth in fractured tuff in the unsaturated zone at the Yucca Mountain candidate high-level waste (HLW) repository site has called into question the usual modeling assumptions based on the equivalent continuum model (ECM). A dual continuum model (DCM) for simulating transient flow and transport at Yucca Mountain is developed. In order to ensure properly converged flow solutions, which are used in the transport simulation, a new flow solution convergence criteria is derived. An extensive series of simulation studies is presented which indicates that rapid movement of solute through the fractures will not occur unless there are intense episodic infiltration events. Movement of solute in the environs of the repository is enhanced if the properties of the tuff layer at the repository horizon are modified from current best-estimate values. Due to a large advective–dispersive coupling between the matrix and fractures, the matrix acts as a major buffer which inhibits rapid transport along the fractures. Consequently, fast movement of solutes through the fractures to the repository depth can only be explained if the matrix–fracture coupling term is significantly reduced from a value that would be calculated on the basis of data currently available. 相似文献
2.
Soil macropore networks establish a dual-domain transport scenario in which water and solutes are preferentially channeled through soil macropores while slowly diffusing into and out of the bulk soil matrix. The influence of macropore networks on intra-ped solute diffusion and preferential transport in a soil typical of subsurface-drained croplands in the Midwestern United States was studied in batch- and column-scale experiments. In the batch diffusion studies with soil aggregates, the estimated diffusion radius (length) of the soil aggregates corresponded to the half-spacing of the aggregate fissures, suggesting that the intra-ped fissures reduced the diffusion impedance and preferentially allowed solutes to diffuse into the soil matrix. In the column-scale solute transport experiments, the average diffusion radius (estimated from HYDRUS-2D simulations and a first-order diffusive transfer term) was nearly double that of the batch-scale study. This increase may be attributed to a loss of pore continuity and a compounding of the small diffusion impedance through macropores at the larger scale. The column-scale solute transport experiments also suggest that two preferential networks exist in the soil. At and near soil saturation, a primary network of large macropores (possibly root channels and earthworm burrows) dominate advective transport, causing a high degree of physical and sorption nonequilibrium and simultaneous breakthrough of a nonreactive (bromide) and a reactive (alachlor) solute. As the saturation level decreases, the primary network drains, while transport through smaller macropores (possibly intra-ped features) continues, resulting in a reduced degree of nonequilibrium and separation in the breakthrough curves of bromide and alachlor. 相似文献
3.
Background A three-dimensional groundwater flow model was used to evaluate the groundwater potential and assess the effects of groundwater withdrawal on the regional water level and flow direction in the central Beijing area. A program of groundwater modeling aimed at estimating current contaminant fluxes to the central area and site streams via groundwater was developed. Results and discussion The conceptual model developed for the site attempted to incorporate a complex stratigraphic profile in which groundwater flow and contaminant transport is strongly controlled by a shallow aquifer. Here, a conceptual model for groundwater flow and contaminant transport in central Beijing is presented. Conclusion Model simulations indicated that a sharp drop in the hydraulic head occurs at the center of the model area, which generates a cone of depression and a continuous decline of head with respect to time as a result of heavy groundwater abstraction. 相似文献
4.
A column containing four concentric layers of progressively finer-grained glass beads (graded column) was used to study the transport of the bacteriophage T7 in water flowing parallel to layering through a fining-upwards (FU) sedimentary structure. By passing a pulse of T7, and a conservative solute tracer upwards through a column packed with a single bead size (uniform column), the capacity of each bead type to attenuate the bacteriophage was determined. Solute and bacteriophage responses were modelled using an analytical solution to the advection-dispersion equation, with first-order kinetic deposition simulating bacteriophage attenuation. Resulting deposition constants for different flow velocities indicated that filtration theory-determined values differed from experimentally determined values by less than 10%. In contrast, the responses of solute and bacteriophage tracers passing upwards through graded columns could not be reproduced with a single analytical solution. However, a flux-weighted summation of four one-dimensional advective-dispersive analytical terms approximated solute breakthrough curves. The prolonged tailing observed in the resulting curve resembled that typically generated from field-based tracer test data, reflecting the potential importance of textural heterogeneity in the transport of dissolved substances in groundwater. Moreover, bacteriophage deposition terms, determined from filtration theory, reproduced the T7 breakthrough curve once desorption and inactivation on grain surfaces were incorporated. To evaluate the effect of FU sequences on mass transport processes in more detail, bacteriophage passage through sequences resembling those sampled from a FU bed in a fluvioglacial gravel pit were carried out using an analogous approach to that employed in the laboratory. Both solute and bacteriophage breakthrough responses resembled those generated from field-based test data and in the graded column experiments. Comparisons with the results of simulations using averaged hydraulic conductivities show that simulations employing averaged parameters overestimate bacteriophage travel times and underestimate masses recovered and peak concentrations. 相似文献
5.
Inverse methods used in assessing landfill liner design have not yet taken advantage of current developments in inverse procedures. Here, a method for inverting contaminant transport models is presented including a general error model and procedures for differentially weighted multiple response regression. General error models are employed in cases where the residuals are heteroscedastic and correlated, and lead to valid inference on model parameter and predictive uncertainty. The Shuffled Complex Evolution algorithm is used to optimise model parameters. Model parameter uncertainty is assessed by exploring the posterior probability distribution with the Metropolis algorithm, a Markov chain Monte Carlo sampling method. The inverse method is applied to simultaneously determine the sorption and diffusion parameters from laboratory diffusion cell experiments. In these experiments, fluoride migration through kaolin clays was measured by sampling the source and collector cells over time. To uniquely determine the transport model parameters, it was necessary to simultaneously fit the observed data from two independent diffusion cell experiments with different initial concentrations. The jointly fitted transport model parameters compared well with those fitted to independent batch experiments. 相似文献
6.
Despite the influence that amphibians have on the flow of energy and nutrients in ecological systems, the role that amphibians play in transporting contaminants through food webs has received very little attention. This study was undertaken to investigate bioaccumulation of trace elements in amphibians relative to other small aquatic organisms in a contaminated wetland. We collected bullfrog larvae (Rana catesbeiana) along with three other species of small vertebrates and four species of invertebrates from a site contaminated with a wide array of trace elements and analyzed them for trace element concentrations and stable nitrogen and carbon isotope composition. We found that amphibian larvae accumulated the highest concentrations of most trace elements, possibly due to their feeding ecology. These results suggest that omnivorous amphibian larvae can serve as a critical link for trace element trophic transfer. Their propensity to accumulate trace elements may have important implications for amphibian health in contaminated environments and should be further investigated. 相似文献
7.
Volatilization of selenium (Se) from soil to the atmosphere involves several sequential chemical reactions that form volatile Se species, followed by transport of the gaseous Se through the soil. This paper describes a numerical model that simulates the chemical and physical processes governing the production and transport of Se vapor in unsaturated soil. The model couples the four Se species involved in the production of Se vapor through chemical reactions, and allows each to migrate through the soil by advection, liquid or vapor diffusion depending on its affinity for the dissolved or vapor phase. The coupled transformations and transport of the four Se species, i.e., selenate, selenite, elemental and organic Se, and Se vapor, were calculated based on the Crank-Nicolson finite difference method. The model was used to analyze fluxes of Se vapor measured from a soil amended with inorganic Se in the form of selenate and covered with unamended clean soil of various thicknesses. Evolution of Se vapor from the soil was very fast, with measurable amounts of Se detected within 24 h. The peak of Se volatilization, detected at the 6th day, reached 3.31 Se microgram/day for the uncovered soil, but was reduced to near the detection limit (0.05 microgram/day) in the presence of a 8- or 16-cm clean soil cover. With two reaction rate coefficients fitted to the data, the model described Se volatilization very well. The estimated rate coefficient of Se methylation was unexpectedly high, with a value of 0.167/day. The net volatilization of Se, however, was severely inhibited by the fast demethylation, i.e., the reverse reaction which converted volatile Se species back into nonvolatile forms. As a result, Se vapor only penetrated a few centimeters in the soil. The demethylation rate coefficient, assessed by independent transport experiments using dimethyl selenide, was estimated as 186.8/day, corresponding to a half-life of only 5.3 min for Se vapor. Results of this study indicated that rapid demethylation of Se vapor during its diffusive transport through a soil is probably an important limiting factor in the volatilization of Se under natural conditions. 相似文献
8.
Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow. 相似文献
9.
Backward location and travel time probabilities can be used to determine the prior position of contamination in an aquifer. These probabilities, which are related to adjoint states of concentration, can be used to improve characterization of known sources of groundwater contamination, to identify previously unknown contamination sources, and to delineate capture zones. The first contribution of this paper is to extend the adjoint model to the case of a decaying solute (first-order decay), and to describe two different interpretations of backward probabilities. The conventional interpretation accounts for the probability that a contaminant particle could decay before reaching the detection location. The other interpretation is conditioned on the fact that the detected contaminant particle actually reached the detection location, despite this possibility of decay. In either case, travel time probabilities are skewed toward earlier travel times, relative to a conservative solute. The second contribution of this paper is to verify the load term for a monitoring well observation. We provide examples using one-dimensional models and hypothetical aquifers. We employ an infinite domain in order to verify the monitoring well load. This new but simple one-dimensional adjoint solution can also be used to verify higher-dimensional numerical models of backward location and travel time probabilities. We employ a semi-infinite domain to illustrate the effect of decay on backward models of pumping well probabilistic capture zones. Decay causes the capture zones to fall closer to the well. 相似文献
10.
The effects of nonlinear sorption and competition with major cations present in the soil solution on radioactive strontium transport in an eolian sand were examined. Three laboratory techniques were used to identify and quantify the chemical and hydrodynamic processes involved in strontium transport: batch experiments, stirred flow-through reactor experiments and saturated laboratory columns. The major goal was to compare the results obtained under static and dynamic conditions and to describe in a deterministic manner the predominant processes involved in radioactive strontium transport in such systems. Experiments under dynamic conditions, namely flow-through reactor and column experiments, were in very good agreement even though the solid/liquid ratio was very different. The experimental data obtained from the flow-through reactor study pointed to a nonlinear, instantaneous and reversible sorption process. Miscible displacement experiments were conducted to demonstrate the competition between stable and radioactive strontium and to quantify its effect on the 85Sr retardation factor. The results were modeled using the PHREEQC computer code. A suitable cation-exchange model was used to describe the solute/soil reaction. The model successfully described the results of the entire set of miscible displacement experiments using the same set of parameter values for the reaction calculations. The column study revealed that the stable Sr aqueous concentration was the most sensitive variable of the model, and that the initial state of the sand/solution system had also to be controlled to explain and describe the measured retardation factor of radioactive strontium. From these observations, propositions can be made to explain the discrepancies observed between some data obtained from static (batches) and dynamic (reactor and column) experiments. Desorbed antecedent species (stable Sr) are removed from the column or reactor in the flow system but continue to compete for sorption sites in the batch system. Batch experiments are simple and fast, and provide a very useful means of multiplying data. However, interpretation becomes difficult when different species compete for sorption sites in the soil/solution system. A combination of batches, flow-through reactor and column experiments, coupled with hydrogeochemical modeling, would seem to offer a very powerful tool for identifying and quantifying the predominant processes on a cubic decimeter scale (dm3) and for providing a range of radioactive strontium retardation factor as a function of the geochemistry of the soil/solution system. 相似文献
12.
Soil column experiments were conducted to study bacterial growth and transport in porous media under denitrifying conditions. The study used a denitrifying microbial consortium isolated from aquifer sediments sampled at the U.S. Department of Energy's Hanford site. One-dimensional, packed-column transport studies were conducted under two substrate loading conditions. A detailed numerical model was developed to predict the measured effluent cell and substrate concentration profiles. First-order attachment and detachment models described the interphase exchange processes between suspended and attached biomass. Insignificantly different detachment coefficient values of 0.32 and 0.43 day −1, respectively, were estimated for the high and low nitrate loading conditions (48 and 5 mg l −1 NO 3, respectively). Comparison of these values with those calculated from published data for aerobically growing organisms shows that the denitrifying consortium had lower detachment rate coefficients. This suggests that, similar to detachment rates in reactor-grown biofilms, detachment in porous media may increase with microbial growth rate. However, available literature data are not sufficient to confirm a specific analytical model for predicting this growth dependence. 相似文献
13.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish. 相似文献
14.
Cs+ transport experiments carried out in columns packed with uncontaminated Hanford formation sediment from the SX tank farm provide strong support for the use of a multisite, multicomponent cation exchange model to describe Cs+ migration in the Hanford vadose zone. The experimental results indicate a strong dependence of the effective Cs+ Kd on the concentrations of other cations, including Na+ that is present at high to extremely high concentrations in fluids leaking from the Hanford SX tanks. A strong dependence of the Cs+ Kd on the aqueous Cs+ concentration is also apparent, with retardation of Cs+ increasing from a value of 41 at a Cs+ concentration of 10(-4) M in the feed solution to as much as 282 at a Cs+ concentration of 5x10(-7) M, all in a background of 1 M NaNO3. The total cation exchange capacity (CEC) of the Hanford sediment was determined using 22Na isotopic equilibrium exchange in a flow-through column experiment. The value for the CEC of 120 microeq/g determined with this method is compatible with a value of 121.9 microeq/g determined by multi-cation elution. While two distinct exchange sites were proposed by Zachara et al. [Geochim. Cosmochim. Acta 66 (2002) 193] based on binary batch exchange experiments, a third site is proposed in this study to improve the fit of the Cs+-Na+ and Cs+-Ca+ exchange data and to capture self-sharpened Cs+ breakthrough curves at low concentrations of Cs+. Two of the proposed exchange sites represent frayed edge sites (FES) on weathered micas and constitute 0.02% and 0.22% of the total CEC. Both of the FES show a very strong selectivity for Cs+ over Na+ (K(Na-Cs)=10(7.22) and 10(4.93), respectively). The third site, accounting for over 99% of the total CEC, is associated with planar sites on expansible clays and shows a smaller Na+-Cs+ selectivity coefficient of 10(1.99). Parameters derived from a fit of binary batch experiments alone tend to under predict Cs+ retardation in the column experiments. The transport experiments indicate 72-90% of the Cs+ sorbed in experiments targeting exchange on FES was desorbed over a 10- and 24-day period, respectively. At high Cs+ concentrations, where sorption is controlled primarily by exchange on planar sites, 95% of the Cs+ desorption was desorbed. Most of the difficulty in desorbing Cs+ from FES is a result of the extremely high selectivity of these sites for Cs+, although truly irreversible sorption as high as 23% was suggested in one experiment. The conclusion that Cs+ exchange is largely reversible in a thermodynamic sense is supported by the ability to match Cs+ desorption curves almost quantitatively with an equilibrium reactive transport simulation. The model for Cs+ retardation developed here qualitatively explains the behavior of Cs+ in the Hanford vadose zone underneath a variety of leaking tanks with differing salt concentrations. The high selectivity of FES for Cs+ implies that future desorption and migration is very unlikely to occur under natural recharge conditions. 相似文献
15.
Viruses and bacteria which are characterized by finite lives in the subsurface are rapidly transported via fractures and cavities in fractured and karst aquifers. Here, we demonstrate how the coupling of a robust outcrop characterization and hydrogeophysical borehole testing is essential for prediction of contaminant velocities and hence wellhead protection areas. To show this, we use the dolostones of the Permian Magnesian Limestone aquifer in NE England, where we incorporated such information in a groundwater flow and particle tracking model. Within this aquifer, flow in relatively narrow (mechanical aperture of ~?10?1–1 mm) fractures is coupled with that in pipe cavities (~?0.20-m diameter) following normal faults. Karstic cavities and narrow fractures are hydraulically very different. Thus, the solutional features are represented within the model by a pipe network (which accounts for turbulence) embedded within an equivalent porous medium representing Darcian flowing fractures. Incorporation of fault conduits in a groundwater model shows that they strongly influence particle tracking results. Despite this, away from faulted areas, the effective flow porosity of the equivalent porous medium remains a crucial parameter. Here, we recommend as most appropriate a relatively low value of effective porosity (of 2.8?×?10?4) based on borehole hydrogeophysical testing. This contrasts with earlier studies using particle tracking analyses on analogous carbonate aquifers, which used much higher values of effective porosity, typically ~?102 times higher than our value, resulting in highly non-conservative estimates of aquifer vulnerability. Low values of effective flow porosities yield modelled flow velocities ranging from ~?100 up to ~?500 m/day in un-faulted areas. However, the high fracturing density and presence of karstic cavities yield modelled flow velocities up to ~?9000 m/day in fault zones. The combination of such flow velocities along particle traces results in 400-day particle traces up to 8-km length, implying the need for large well protection areas and high aquifer vulnerability to slowly degrading contaminants. 相似文献
16.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain. 相似文献
17.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol ( N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid ( N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation. 相似文献
18.
Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach. 相似文献
19.
Soil column experiments are used to investigate the fate of three pesticides of high, intermediate, and low solubility in groundwater: N- phosphonomethyl glycine (glyphosate); O,O-diethyl-S-[(ethylthio)methyl]phosphorodithioate (phorate); (2,4-dichlorophenoxy)acetic acid (2,4-D). Feed solutions are prepared by adding each pesticide (100 mg/L glyphosate, 50 μ g/L phorate, 50 mg/L 2,4-D) along with conservative tracer, KBr, in synthetic groundwater. The concentration of the pesticides in effluents is detected by ion chromatography (glyphosate, 2,4-D) and GC-FID (phorate). The Br ? breakthrough curves are employed to estimate the dispersion coefficient and mean pore velocity in each column. Solute transport and reactive models accounting for equilibrium/non-equilibrium sorption and biodegradation are coupled with inverse modeling numerical codes to estimate the kinetic parameters for all pesticides. 相似文献
20.
Soil column experiments are used to investigate the fate of three pesticides of high, intermediate, and low solubility in groundwater: N- phosphonomethyl glycine (glyphosate); O,O-diethyl-S-[(ethylthio)methyl]phosphorodithioate (phorate); (2,4-dichlorophenoxy)acetic acid (2,4-D). Feed solutions are prepared by adding each pesticide (100 mg/L glyphosate, 50 micro g/L phorate, 50 mg/L 2,4-D) along with conservative tracer, KBr, in synthetic groundwater. The concentration of the pesticides in effluents is detected by ion chromatography (glyphosate, 2,4-D) and GC-FID (phorate). The Br(-) breakthrough curves are employed to estimate the dispersion coefficient and mean pore velocity in each column. Solute transport and reactive models accounting for equilibrium/non-equilibrium sorption and biodegradation are coupled with inverse modeling numerical codes to estimate the kinetic parameters for all pesticides. 相似文献
|