首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25–65 W m-2, corresponding to relative differences of 20–60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.  相似文献   

2.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

3.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibbes (35.78°N, 82.29°W, 2006 m MSL). The air mass origin was determined using 48-h back trajectories obtained from the hybrid single-particle Lagrangian integrated trajectory model. The highest average concentration is seen in polluted continental air masses and the lowest in marine air masses. During the winter, the overall average BC value was 74.1 ng m−3, whereas the overall summer mean BC value is higher by a factor of 3. The main reason for the seasonal difference may be enhanced thermal convection during summer, which increases transport of air pollutants from the planetary boundary layer of the surrounding urban area to this rural site. In the spring of 1998, abnormally high BC concentrations from the continental sector were measured. These concentrations were originating from a biomass burning plume in Mexico. This was confirmed by the observations of the Earth probe total ozone mapping spectrometer. The BC average concentrations of air masses transported from the polluted continental sector during summer are low on Sunday to Tuesday with a minimum value of 256 ng m−3 occurring on Monday, and high on Wednesday to Friday with a maximum value of 379 ng m−3 occurring on Friday. The net aerosol radiative forcing (scattering effects plus absorption effects) per unit vertical depth at 2006 m MSL is calculated to be −1.38×10−3 W m−3 for the southeastern US. The magnitude of direct radiative forcing by aerosol scattering is reduced by 15±7% due to the BC absorption.  相似文献   

4.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

5.
Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and aerosol number in the boundary layer for the observation period ranged 0.1–7.4 ppb 32.1–64.1 ppb and 1.0–143.6 cm−3, respectively. It was found that the air mass over the Yellow Sea had a character of both the polluted continental air and clean background air, and the sulfur transport was mainly confined in the atmospheric boundary layer. The median of SO2 concentration within the boundary layer was about 0.1–2.2 ppb. However, on 8 November, 1998, the mean concentrations of SO2 and aerosol number increased up to 7.4 ppb and 109.5 cm−3, respectively, in the boundary layer, whereas O3 concentration decreased remarkably. This enhanced SO2 concentration occurred in low level westerly air stream from China to Korea. Aerosol analyses at the downstream site of Taean in Korea showed 2–3 times higher sulfate concentration than that of other sampling days, indicating a significant amount of SO2 conversion to non sea-salt sulfate during the long-range transport.  相似文献   

6.
The main use of air quality forecast (AQF) models is to predict ozone (O3) exceedances of the primary O3 standard for informing the public of potential health concerns. This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations. These exposure indices include two concentration-based O3 indices, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations, respectively), and three cumulative exposure-based indices, SUM06 (the sum of all hourly O3 concentrations  0.06 ppm), W126 (hourly concentrations weighed by a sigmoidal weighting function), and AOT40 (O3 concentrations accumulated over a threshold of 40 ppb during daylight hours). During a three-month simulation (July–September 2005), the model over predicted the M7 and M12 values by 8–9 ppb, or a NMB value of 19% and a NME value of 21%. The model predicts a central belt of high O3 extending from Southern California to Middle Atlantic where the seasonal means, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations), are higher than 50 ppbv. In contrast, the model is less capable of reproducing the observed cumulative indices. For AOT40, SUM06 and W126, the NMB and NME values are two- to three-fold of that for M7, M12 or peak 8-h O3 concentrations. The AOT40 values range from 2 to 33 ppm h by the model and from 1 to 40 ppm h by the monitors. There is a significantly higher AOT40 value experienced in the United States in comparison to Europe. The domain-wide mean SUM06 value is 14.4 ppm h, which is about 30% higher than W126, and 40% higher than AOT40 calculated from the same 3-month hourly O3 data. This suggests that SUM06 and W126 represent a more stringent standard than AOT40 if either the SUM06 or the W126 was used as a secondary O3 standard. Although CMAQ considerably over predicts SUM06 and W126 values at the low end, the model under predicts the extreme high exposure values (>50 ppm h). Most of these extreme high values are found at inland California sites. Based on our analysis, further improvement of the model is needed to better capture cumulative exposure indices.  相似文献   

7.
The project ‘Climate Analysis of the Region of Basel’ (KABA) was carried out in cooperation with several planning authorities to produce climate analysis and planning recommendation maps at scales of 1 : 100,000 and 1 : 25,000. These maps enable urban and regional planners to estimate impacts of land-use changes on local climate and air quality. Conceptual numerical models receiving spatially distributed input data from a geographic information system derived the information content of the maps. By introducing novel concepts concerning land-use and ventilation, the dominant controls for local climate and air quality, automated, knowledge-based classification schemes for climate analysis were developed and applied. The same model technique was utilized for a spatially distributed assignment of planning objectives to the study region. Three different problem sections are considered: ventilation, air quality and thermal situation. Several planning objectives were distinguished within each problem section, and each element of a 100 m grid was individually evaluated by automated, knowledge-based classification procedures. This approach provides a high degree of transparency and objectivity in place of subjective (and thus irreproducible) assessments by experts. Transfer of the procedures to other regions could be successfully demonstrated in a project named ‘Climate Analysis Maps for Planning Aspects of Solothurn/CH (CAMPAS/CH)’ funded by European Space Agency. Hence, the approach is of general interest, at least for many densely populated regions at mid-latitudes.  相似文献   

8.
A winter PM2.5 episode that achieved a maximum 24-h average of 138 μg m−3 at the Fresno Supersite in California's San Joaquin Valley between 2 and 12 January, 2000 is examined using 5-min to 1-h continuous measurements of mass, nitrate, black carbon, particle-bound PAH, and meteorological measurements. Every day PM2.5 sampling showed that many episodes, including this one, are missed by commonly applied sixth-day monitoring, even though quarterly averages and numbers of US air quality standard exceedances are adequately estimated. Simultaneous measurements at satellite sites show that the Fresno Supersite represented PM2.5 within the city, and that half or more of the urban concentrations were present at distant, non-urban locations unaffected by local sources. Most of the primary particles accumulated during early morning and nighttime, decreasing when surface temperatures increased and the shallow radiation inversion coupled to a valleywide layer. When this coupling occurred, nitrate levels increased rapidly over a 10–30 min period as black carbon and gaseous concentrations dropped. This is consistent with a conceptual model in which secondary aerosol forms above the surface layer and is effectively decoupled from the surface for all but the late-morning and early afternoon period. Primary pollutants, such as organic and black carbon, accumulate within the shallow surface layer in urban areas where wood burning and vehicle exhaust emissions are high. Such a model would explain why earlier studies find nitrate concentrations to be nearly the same among widely separated sites in urban areas, as winds aloft of 1 to 6 m s−1 could easily disperse the elevated aerosol throughout the valley.  相似文献   

9.
We present calculations to estimate potential changes to the local climate and photochemistry caused by pollutants (gases and particles) produced in Mexico City, and the implications for the regional scale when pollutants are exported to surrounding regions. Measured aerosol optical properties are used in a 2-stream delta-Eddington radiative transfer model (Slingo and Schrecker, 1982. Quarterly Journal of the Royal Meteorological Society 108, 407–426) to estimate net radiative fluxes and heating rates, while photolysis rates for nitrogen dioxide and ozone are estimated from a much more detailed model (Madronich, 1987. Journal of Geophysical Research 92, 9740–9752). The presence of highly absorbing aerosols in Mexico City leads to a 17.6% reduction in solar radiative flux at the surface when an optical depth of 0.55 is considered. Photolysis rates for nitrogen dioxide and ozone are reduced between 18 and 21% at the surface, while an increase of between 15 and 17% is predicted above the boundary layer, for local noon calculations.The non-uniform vertical structure of aerosol concentrations observed (Pérez Vidal and Raga, 1998. Atmosfera 11, 95–108) plays a significant role in determining localized regions of heating, i.e. stabilization at the top of the boundary layer that results in a temperature increase of 0.4K h−1 at that level. The presence of a 200 m-deep aerosol layer at the top of the boundary layer results in vertical profiles of the photolysis rates that are significantly different from the case where the aerosols are uniformly distributed in the mixed layer. At the bottom of the aerosol layer (about 1 km above the surface), the rates are about 28% lower than when there is a uniform aerosol distribution in the boundary layer. Finally, there is also an enhancement of photolysis rates at the top of the boundary layer that may lead to increased ozone production compared to the non-aerosol case.  相似文献   

10.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

11.
Black carbon (soot) concentrations have been measured in rain water, snow samples and near surface air at several locations in Nova Scotia, Canada. The average black carbon concentration in near surface air in summer was found to be 0.54 μg m-3 compared to 1.74 μg m-3 in the winter season. These values are comparable to black carbon concentrations found in other mid-size urban areas. The black carbon concentration in rain water and snow samples varied between an undetectable amount to about 20 μg kg-1 of rain (or melt) water. The relatively low concentrations of black carbon in precipitation are attributed to extratropical cyclones that often develop off-shore to the east and south of Nova Scotia in relatively clean conditions of the marine boundary layer.  相似文献   

12.
In the present work, a box model is applied to estimate the direct climate forcing of aerosol particles for rural air in Central Europe during summertime. In the model, the input parameters reflect regional character: data from satellite observations and other surface measurements are used referring to the selected area, Hungary. In the calculation of direct climate forcing of aerosol particles satellite observations serve as the source of incoming solar radiation intensity data and cloudiness, while different aerosol parameters of the model (mass extinction coefficient, chemical composition, scale height, hygroscopic growth factor, etc.) are based on local measurements. Finally, surface albedo of the area studied was determined on the basis of vegetation cover and precipitation amount. As the summary of our calculations, in Central Europe direct climate forcing of ammonium sulfate is equal to –2.4 W m−2. The climate forcing of total carbon is composed of two terms. The forcings due to scattering and absorption are –1.0 and +0.2 W m−2, respectively. In spite of the fact that the mass concentrations of ammonium sulfate and total carbon are similar, their contribution to the aerosol direct forcing is different. We conclude that ammonium sulfate plays the major role in this process and organics have an additional impact.  相似文献   

13.
This paper presents an aerosol optical scheme developed in the chemistry-transport model CHIMERE dedicated to calculate optical properties of particles. Such developments are very helpful as they complement the usual validation with PM (Particulate Matter) ground-based measurements by using surface (AERONET/PHOTONS network) and satellite (MODIS) remote sensing observations. To reach this goal, Aerosol Optical Thickness (AOT), column-averaged Single Scattering Albedo (SSA) and asymmetry parameter (g) are calculated at 440 nm, 675 nm, 870 nm and 1020 nm (AERONET wavelengths) under three hypotheses on the particle mixing state (external, internally homogeneous and core-shell). Furthermore and in addition to optical calculations, an original development has been made to estimate column volume size distributions in CHIMERE, directly comparable with AERONET retrievals. Comparisons between simulations and observations are made over Western Europe for the year 2003 but also for one specific case focused on ammonium nitrate aerosols. Observed AOT display a seasonal cycle (with highest values during summer) rather well reproduced by the model but biases with observational data have been found depending on seasons. In fall, winter and early spring, modeled AOT values agree well with AERONET retrievals with small negative biases. Focus on a pollution episode of ammonium nitrate origin during March 2003 reveals that CHIMERE is able to well reproduce the fine mode volume size distribution retrieved by AERONET, leading to good agreements between modeled and observed AOT. In late spring and summer, AERONET AOT values are underpredicted by the model, which could be due to uncertainties in modeling secondary species.  相似文献   

14.
Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.  相似文献   

15.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

16.
The concentrations of total gaseous mercury (Hg) were determined from an urban area between two different time periods of the late 1980s and the late 1990s and compared to evaluate the mechanisms regulating Hg distribution over a decadal period. Because of time gap and the associated changes in source/sink relationships, the observed concentration levels of Hg were remarkably different between the two periods. The results showed that the Hg levels in the former period were averaged to be 14.4±9.56 ng m−3 (N=2714), while the latter period was recorded at approximately three-fold reduced values of 5.34±3.92 ng m−3 (N=2576). Using the measurement data for the two independent periods, we were able to describe the basic features of Hg distribution that correspond to each time period. When inspected over a 24 h scale, two contrasting patterns emerged for the two time periods. The former was characterized by enhanced concentration levels during daytime, but the latter with relative depletion during daytime. The results of the two periods, when inspected over seasonal scale, showed many similarities and dissimilarities simultaneously. In order to analyze the factors affecting Hg distributions of each period, we conducted correlation analysis on the data groups divided both diurnally and seasonally. Results of these analyses consistently indicate that correlation patterns may be associated with the factors regulating the diurnal variability of Hg. The data for the late 1980s consistently indicate the presence of a single dominant source process that can be represented by the use of coal. However, the patterns described for those of the late 1990s suggest that the sources of Hg be tightly tied up with the general sources of air pollution that can lead to the degradation of urban air quality. In addition, we suspect that notable shifts in meteorological conditions between the two periods might also have been conducive to changes in Hg concentration levels to a certain extent.  相似文献   

17.
Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km. This dataset was completed by 5 years of monthly profiles above Novosibirsk. Particle number concentration was measured in the size ranges 3–70 and 70–200 nm, along with other tracers. Free troposphere (FT) particle concentrations (N3–200) varied between 60 and 460 cm?3, inferior to boundary layer concentrations (100–7000 cm?3). In April, high concentrations of ~500 cm?3 were observed in a polluted air mass recently uplifted at 5–6 km altitude over eastern Siberia, with no sign of significant new particle formation. In September, particle concentrations decreased with altitude, but with a steeper gradient in N70–200 compared to N3–70, the latter accounting for 90% of the total particle concentration in the free troposphere at 6–7 km altitude. Because ultra-fine particles presumably have short lifetimes, these observed particles could have been formed in situ in the clean Siberian atmosphere. Two cases of possible nucleation with high concentration and N3–70/N70–200 ratios are reported for the September campaign, in the upper troposphere and in cloud outflow in the mid-troposphere. In the seasonal analysis, a FT N3–70 maximum is found in July–August between 6 and 7 km altitude, with N3–70 accounting for ~90% of N3–200 supporting the hypothesis of in situ formation in the FT. A secondary FT maximum of N3–70 was identified later in autumn. In the boundary layer, seasonally maximum N3–70 concentrations were found over Novosibirsk in May and September, but not in summer, possibly due to scavenging by precipitations and a large condensational sink from biomass burning aerosols. Our dataset has a limited size resolution and no speciation capability; more investigation is thus required to understand the conditions leading to in situ nucleation processes in the Siberian air shed.  相似文献   

18.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

19.
Fog was sampled at four locations in California’s San Joaquin Valley (SJV) during December 1995 and January 1996 as part of the 1995 Integrated Monitoring Study (IMS95). The fog sampling campaign was conducted in two phases. During the first phase, fog was sampled at three southern SJV surface locations, two urban (Fresno and Bakersfield) and one rural (near the Kern Wildlife Refuge). Both bulk samples (representative of the entire fog drop spectrum) and size-fractionated samples were collected. During the second phase, bulk fog samples were collected at three elevations on a 430 m television transmission tower in the northern SJV, representing some of the first observations of vertical variations in fog composition. SJV fog was observed to be consistently alkaline. The median pH measured in the southern SJV was 6.49, with a range from 4.97 to 7.43. Dominant species in the fog water were ammonium (median southern SJV concentration of 1008 microequivalents/l (μN)), nitrate (483 μN), sulfate (117 μN), acetate (117 μN), formate (63 μN), and formaldehyde (46 μM). Concentrations of the inorganic ions were similar in the urban and rural fogs, although occasionally much higher spikes of S(IV) and sulfate were observed in Bakersfield fog. Acetate, formaldehyde, and total organic carbon, by contrast, were observed to be present in greater concentration in the urban fogs. Bakersfield IMS95 fog concentrations of most species were similar to those measured there in the early 1980s, although concentrations of S(IV) and sulfate were much lower in IMS95 fogs. Significant differences were found between the composition of large and small fog drops, with pH differences at times exceeding one pH unit. The chemical heterogeneity present among SJV fog drop populations is likely to result in significant enhancement of aqueous sulfate production rates over those expected from average fog properties. Significant vertical variations were also observed in fog composition. Liquid water content was observed to increase strongly with elevation, while major ion aqueous concentrations in fog drops decreased with altitude. The total amount of solute contained within the fog (per unit volume of air) was observed to increase with altitude. These observations form a unique data set to be used for model evaluation and for further analysis of aerosol processing by fogs.  相似文献   

20.
Land use and pollutant emission changes can have significant impacts on air quality, regional climate, and human health. Here we describe a modeling study aimed at quantifying the potential effects of extensive changes in urban land cover in the New York City (NYC), USA metropolitan region on surface meteorology and ozone (O3) concentrations. The SLEUTH land-use change model was used to extrapolate urban land cover over this region from “present-day” (ca. 1990) conditions to a future year (ca. 2050), and these projections were subsequently integrated into meteorological and air quality simulations. The development of the future-year land-use scenario followed the narrative of the “A2” scenario described by the Intergovernmental Panel on Climate Change (IPCC), but was restricted to the greater NYC area. The modeling system consists of the Penn State/NCAR MM5 mesoscale meteorological model; the Sparse Matrix Operator Kernal Emissions processing system; and the US EPA Community Multiscale Air Quality model, and simulations were performed for two 18-day episodes, one near-past and one future. Our results suggest that extensive urban growth in the NYC metropolitan area has the potential to increase afternoon near-surface temperatures by more than 0.6 °C and planetary boundary layer (PBL) heights by more than 150 m, as well as decrease water vapor mixing ratio by more than 0.6 g kg−1, across the NYC metropolitan area, with the areal extent of all of these changes generally coinciding with the area of increased urbanization. On the other hand, the impacts of these land use changes on ozone concentrations are more complex. Simulation results indicate that future changes in urbanization, with emissions held constant, may lead to increases in episode-average O3 levels by about 1–5 ppb, and episode-maximum 8 h O3 levels by more than 6 ppb across much of the NYC area. However, spatial patterns of ozone changes are heterogeneous and also indicate the presence of areas with decreasing ozone concentrations. When anthropogenic emissions were increased to be consistent with the extensive urbanization in the greater NYC area, the O3 levels increased in outer counties of the metropolitan region but decreased in others, including coastal Connecticut and the Long Island Sound area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号