首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NOx). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s?1 m?2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.  相似文献   

2.
This work intends to quantify the variation in optical properties of aerosol by in-situ spectroscopic monitoring the ozonolysis of a mixture of typical biomass burning compounds. The reaction occurs on silica and glass particles in the presence of simulated sunlight.Fused silica particles (Aerosil) were coated with a thin film of a 1:1 mixure of 4-phenoxyphenol with 4-carboxyphenone as a photosensitizer. UV–VIS spectra of dichloromethane extracts from the particles recorded before and after treatment, show development of a new band after prolonged ozone and light exposure.Changes in optical properties are reported, and variations of spectroscopic features are discussed. We show that the ozone-induced heterogeneous photochemical reaction does produce species absorbing light in the solar spectral range. Further, we demonstrate that the heterogeneous photosensitized reactions at 200 ppb ozone (strongly ozone polluted regions) for a time period of 7 h aging process, can increase light absorption of atmospheric aerosols in the tropospheric actinic window (>290 nm) by 0.4 absorption units ng-C?1 O3 ppm?1 in the region 290–358 nm and by 1.0 absorption units ng-C?1 O3 ppm?1 in the region 360–448 nm.Chemical changes of such surface films were identified by diffuse reflectance infrared Fourier transform spectroscopy of coated glass spheres, and we suggest formation of humic-like substances comparable to those reported in continental aerosol.  相似文献   

3.
To further understand the role of substrates on the heterogeneous reactions of polycyclic aromatic hydrocarbons, the reactions of ozone with anthracene adsorbed on different mineral oxides (SiO2, α-Al2O3 and α-Fe2O3) and on Teflon disc were investigated in dark at 20 °C. No reaction between ozone and anthracene on Teflon disc was observed when the ozone concentration was ~1.18 × 1014 molecules cm?3. The reactions on mineral oxides exhibited pseudo-first-order kinetics for anthracene loss, and the pseudo-first-order rate constant (k1,obs) displayed a Langmuir–Hinshelwood dependence on the gas-phase ozone concentration. The adsorption equilibrium constants for ozone (KO3) on SiO2-1, SiO2-2, α-Al2O3 and α-Fe2O3 were (0.81 ± 0.26) × 10?15 cm3, (2.83 ± 1.17) × 10?15 cm3, (2.48 ± 0.77) × 10?15 cm3 and (1.66 ± 0.45) × 10?15 cm3, respectively; and the maximum pseudo-first-order rate constant (k1,max) on these oxides were (0.385 ± 0.058) s?1, (0.101 ± 0.0138) s?1, (0.0676 ± 0.0086) s?1 and (0.0457 ± 0.004) s?1, respectively. Anthraquinone was identified as the main surface product of anthracene reacted with ozone. Comparison with previous research and the results obtained in this study suggest that the reactivity of anthracene with ozone and the lifetimes of anthracene adsorbed on mineral dust in the atmosphere are determined by the nature of the substrate.  相似文献   

4.
Reactions of ozone on common building products were studied in a dedicated emission test chamber system. Fourteen new and unused products were exposed to 100–160 ppb of ozone at 23 °C and 50% RH during 48 h experiments. Ozone deposition velocities calculated at steady state were between 0.003 cm s−1 (alkyd paint on polyester film) and 0.108 cm s−1 (pine wood board). All tested product showed modified emissions when exposed to ozone and secondary emissions of several aldehydes were identified. Carpets and wall coverings emitted mainly C5–C10 n-aldehydes, typical by-products of surface reactions. Linoleum, polystyrene tiles and pine wood boards also showed increased emissions of formaldehyde, benzaldehyde and hexanal associated with reduced emissions of unsaturated compounds suggesting the occurrence of gas-phase reactions. The ozone removal on the different tested products was primarily associated with surface reactions. The relative contribution of gas-phase reactions to the total ozone removal was estimated to be between 5% and 30% for pine wood boards depending on relative humidity (RH) and on the incoming ozone concentration and 2% for polystyrene tiles. On pine wood board, decreasing ozone deposition velocities were measured with increasing ozone concentrations and with RH increasing in the range 30–50%.  相似文献   

5.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

6.
Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm?<?λ?<?400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m?2), an increase of HONO production rate of up to 8.6?·?109 molecules cm?2 s?1 was observed at [NO2]?=?60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m?2), the HONO production rate increased to 2.1?·?1010 molecules cm?2 s?1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.  相似文献   

7.
For quantitative estimate of biogenic volatile organic compound emissions (BVOCs) in South China and their impact on the regional atmospheric chemistry, a 3-day tropical cyclone-related ozone episode was modeled using chemical transport model CMAQ, which was driven by the mesoscale meteorological model MM5. Hourly biogenic emission inventories were constructed using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. The simulation results show good agreement with observation data in air temperature, ozone and NOx levels. The estimated biogenic emissions of isoprene, terpene, and other reactive VOCs (ORVOCs) during this tropical cyclone-related episode are 8500, 3400, and 11 300 ton day−1, respectively. The ratio of isoprene to the total BVOCs was 36.4%. Two test runs were carried out with one incorporated biogenic emissions and the other without. The simulations show that Guangdong province, particularly the Pearl River Delta (PRD) region, was the area most reactive to biogenic emissions in South China. More ozone was produced in all layers under 1500 m when biogenic emissions were included in comparison to that without BVOCs. The net formation of ozone from 9:00 to 15:00 h was the highest near the surface and could reach 38 ppb, which include 4 ppb attributed to biogenic impact. The enhanced ozone due to biogenic emissions first appeared in the PRD region and slowly spread to a greater area in South China. Process analysis indicated that the surface ozone budget was dominated by the vertical transport and dry deposition. The horizontal transport and gas-phase chemical production were relatively small in the surface layer. Presumably, ozone was produced in upper layers within the atmospheric boundary layer and convected down to surface where it is destroyed. When BVOCs was included, apart from the enhancement of gas-phase chemical production of ozone, both the surface deposition and vertical transport were also augmented.  相似文献   

8.
Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-local PBL scheme. This study analyzes the impact of the non-local scheme on model representation of PBL mixing, consequences for simulations of vertical profiles of air tracers and surface air pollution, and implications for model applications to the interpretation of data retrieved from satellite remote sensing. The non-local scheme significantly improves simulations of the vertical distributions for NO2 and O3, as evaluated using aircraft measurements in summer 2004. It also reduces model biases over the U.S. by more than 10 ppb for surface ozone concentrations at night and by 2–5 ppb for peak ozone in the afternoon, as evaluated using ground observations. The application to inverse modeling of anthropogenic NOx emissions for East China using satellite retrievals of NO2 from OMI and GOME-2 suggests that the full mixing assumption results in 3–14% differences in top–down emission budgets as compared to the non-local scheme. The top–down estimate combining the non-local scheme and the Lin et al. inverse modeling approach suggests a magnitude of 6.6 TgN yr?1 for emissions of NOx over East China in July 2008 and 8.0 TgN yr?1 for January 2009, with the magnitude and seasonality in good agreement with bottom–up estimates.  相似文献   

9.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

10.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

11.
Seven species from two contrasting wetlands, an upland bog and a lowland rich fen in North Wales, UK, were exposed to elevated ozone (150 ppb for 5 days and 20 ppb for 2 days per week) or low ozone (20 ppb) for four weeks in solardomes. The rich fen species were: Molinia caerulea, Juncus subnodulosus, Potentilla erecta and Hydrocotyle vulgaris and the bog species were: Carex echinata, Potentilla erecta and Festuca rubra. Senescence significantly increased under elevated ozone in all seven species but only Molinia caerulea showed a reduction in biomass under elevated ozone. Decomposition rates of plants exposed to elevated ozone, as measured by carbon dioxide efflux from dried plant material inoculated with peat slurry, increased for Potentilla erecta with higher hydrolytic enzyme activities. In contrast, a decrease in enzyme activities and a non-significant decrease in carbon dioxide efflux occurred in the grasses, sedge and rush species.  相似文献   

12.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

13.
The surface-phase reaction products of dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with ozone (O3), air, or nitrogen (N2) on silanized glass, glass and vinyl flooring tile were investigated using the recently published FACS (FLEC (Field and Laboratory Emission Cell) Automation and Control System). The FACS was used to deliver ozone (100 ppb), air, or N2 to the surface at a specified flow rate (300 mL min?1) and relative humidity (50%) after application of a 2.0% dihydromyrcenol solution in methanol. Oxidation products were detected using the derivatization agents: O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and N,O-bis(trimethysilyl)trifluoroacetamide (BSTFA). The positively identified reaction products were glycolaldehyde, 2,6-dimethyl-5-heptenal, and glyoxal. The proposed oxidation products based on previously published VOC/O3 reaction mechanisms were: 2,6-dimethyl-4-heptenal, 6-methyl-7-octen-2-one and the surface-specific reaction products: 6-methyl-6-hepten-2-one, 6-methyl-5-hepten-2-one, and 6-hydroxy-6-methylheptan-2-one. Though similar products were observed in gas-phase dihydromyrcenol/O3 reactions, the ratio, based on peak area, of the reaction products was different suggesting stabilization of larger molecular weight species by the surface. Emission profiles of these oxidation products over 72 h are also reported.  相似文献   

14.
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.  相似文献   

15.
The kinetics of the heterogeneous reaction between gaseous HCHO and TiO2/SiO2 mineral coatings were investigated using a coated-wall flow tube to mimic HCHO loss on mineral aerosol and TiO2 coated depolluting urban surfaces. The measured uptake kinetics were strongly enhanced when the flow tube was irradiated with 340–420 nm UV light with an irradiance of 1.45 mW cm?2. The associated BET uptake coefficients ranged from (3.00 ± 0.45) × 10?9 to (2.26 ± 0.34) × 10?6 and were strongly dependent on HCHO initial concentration, relative humidity, temperature, and TiO2 content in the mineral coating, which ranged from 3.5 to 32.5 ppbv, 6–70%, 278–303 K, and 1–100 %wt, respectively. The measured kinetics were well described using a Langmuir–Hinshelwood type formalism. The estimated uptake coefficients were used to discuss the importance of heterogeneous HCHO surface loss, in terms of deposition lifetimes, as compared to major homogeneous gas-phase losses such as OH reaction and photolysis. It is found that deposition may compete with gas-phase removal of HCHO in a dense urban environment if more than 10% of the urban surface is covered with TiO2 treated material.  相似文献   

16.
The gas-phase ozonolysis of (E)-β-farnesene was investigated in a 3.91 m3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10?16 cm3 molecule?1 s?1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and (E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of (E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of (E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.  相似文献   

17.
Saplings of two clones of European white birch (Betula pendula Roth) were exposed to three different ozone profiles resulting in same AOT40 value of 13–14 ppm h in a chamber experiment. The sensitive clone 5 and the more tolerant clone 2 were growing (1) under filtered air (=control), or (2) were exposed to 70 ppb ozone for 24 h d−1 (=profile 1), (3) to 100 ppb ozone for 12 h d−1 at 8:00–20:00 (=profile 2), or (4) to 200 ppb ozone for 4.5 h d−1 at 9:30–14:00 (=profile 3) for 20 d. The saplings were determined for growth, visible leaf injuries, stomatal conductance, and concentrations of Rubisco, chlorophyll and carotenoids. Growth responses and induction of visible foliar injuries under different ozone profiles were variable, resulting in 4–17% lower dry mass of shoot, 16–46% reduction in stem height increment and 11–43% increase in visible injuries in clone 5, which was accompanied by higher leaf turnover rate under profile 3 indicating compensation growth. In clone 2, ozone-induced responses ranged from slight stimulation in stem height growth to 13% decrease in dry mass of shoot and 2–16% increase in visible injuries. Daytime stomatal conductance rates were lowered by 14–54% in clone 5 and 9–74% in clone 2, depending on profile. The additional power-weighted analyses revealed that high peak concentrations and exposure shape were important for induction of visible injuries in both clones and reduction in stomatal conductance in clone 5, whereas growth reductions were rather related to total cumulative exposure. The results indicate that profile of ozone exposure, night-time stomatal conductance (24 h flux), and recovery time for defence and compensations reactions should not be ignored in plant response and ozone flux modelling.  相似文献   

18.

The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O3) toxicity. The study aims to explore the O3 stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse. Six treatments, control (ambient ozone level 40–45 ppb), ambient O3 with ascorbic acid, ambient ozone with silicic acid, elevated ozone (120 ppb), elevated O3 with ascorbic acid (10 mM), and elevated ozone with silicic acid (0.1 mM) were applied. The O3 fumigation was carried out using an O3 generator. The results revealed that ascorbic acid and silicic acid application decreased the number of plants with foliar O3 injury symptoms in different degrees, i.e., zero, first, second, third, and fourth degrees; whereas 0–4 degree symptoms represent, no symptoms, symptoms occupying?<?1/4, 1/4–1/2, 1/2–3/4, and?>?3/4 of the total foliage area, respectively. Application of ascorbic acid and silicic acid also prevented the plants from the negative effects of O3 in terms of fresh as well as dry matter production, leaf chlorophyll, carotenoids, soluble proteins and ascorbic acid, proline, and malondialdehyde (MDA) contents. Overall, silicic acid application proved more effective in reducing the negative effects of O3 on mung bean genotypes as compared to that of the ascorbic acid. Three mung bean genotypes (NM 20–21, NM-2006, and NM-2016) were identified to have a better adaptive mechanism for O3 toxicity tolerance and may be good candidates for future variety development programs.

  相似文献   

19.
Interannual, seasonal, daily and altitudinal patterns of tropospheric ozone mixing ratios, as well as ozone phytotoxicity and the relationship with NOx precursors and meteorological variables were monitored in the Central Catalan Pyrenees (Meranges valley and Forest of Guils) over a period of 5 years (2004–2008). Biweekly measurements using Radiello passive samplers were taken along two altitudinal transects comprised of thirteen stations ranging from 1040 to 2300 m a.s.l. Visual symptoms of ozone damage in Bel-W3 tobacco cultivars were evaluated biweekly for the first three years (2004–2006). High ozone mixing ratios, always above forest and vegetation protection AOT40 thresholds, were monitored every year. In the last 14 years, the AOT40 (Apr–Sept.) has increased significantly by 1047 μg m?3 h per year. Annual means of ozone mixing ratios ranged between 38 and 67 ppbv (38 and 74 ppbv during the warm period) at the highest site (2300 m) and increased at a rate of 5.1 ppbv year?1. The ozone mixing ratios were also on average 35–38% greater during the warm period and had a characteristic daily pattern with minimum values in the early morning, a rise during the morning and a decline overnight, that was less marked the higher the altitude. Whereas ozone mixing ratios increased significantly with altitude from 35 ppbv at 1040 m–56 ppbv at 2300 m (on average for 2004–2007 period), NO2 mixing ratios decreased with altitude from 5.5 ppbv at 1040 m–1 ppbv at 2300 m. The analysis of meteorological variables and NOx values suggests that the ozone mainly originated from urban areas and was transported to high-mountain sites, remaining aloft in absence of NO. Ozone damage rates increased with altitude in response to increasing O3 mixing ratios and a possible increase in O3 uptake due to more favorable microclimatic conditions found at higher altitude, which confirms Bel-W3 as a suitable biomonitor for ozone concentrations during summer time. Compared to the valley-bottom site the annual means of ozone mixing ratios are 37% larger in the higher sites. Thus the AOT40 for the forest and vegetation protection threshold is greatly exceeded at higher sites. This could have substantial effects on plant life at high altitudes in the Pyrenees.  相似文献   

20.
Size-resolved chemical compositions of non-refractory submicron aerosols were measured using a quadrupole Aerodyne aerosol mass spectrometer at a rural site near Guangzhou in the Pearl River Delta (PRD) of China in the summer of 2006. Two cases characterized as the outflows from the PRD urban region with plumes of high SO2 concentration were investigated. The evolution of sulfate size distributions was observed on a timescale of several hours. Namely mass concentrations of sulfate in the condensation mode (with vacuum aerodynamic diameters (Dva) < 300 nm) increased at a rate of about 0.17–0.37 ppbv h?1 during the daytime. This finding was consistent with the sulfuric acid production rates of about 0.17–0.3 ppbv h?1, as calculated from the observed gas-phase concentrations of OH (~3.3 × 106–1.7 × 107 cm?3) and SO2 (~3–21.2 ppbv). This implies that the growth of sulfate in the condensation mode was mainly due to gas-phase oxidation of SO2. The observed rapid increase was caused mainly by the concurrent high concentrations of OH and SO2 in the air mass. The evolution of the mass size distributions of m/z 44, a tracer for oxygenated organic aerosol (OOA), was very similar to that of sulfate. The mass loadings of m/z 44 were strongly correlated with those of sulfate (r2 = 0.99) in the condensation mode, indicating that OOA might also be formed by the gas-phase oxidation of volatile organic compound (VOC) precursors. It is likely that sulfate and OOA were internally mixed throughout the whole size range in the air mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号