首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.  相似文献   

2.

Background

PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined.

Methods

Water-soluble inorganic ions (Cl?, NO 3 ? , SO 4 2? , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively.

Results

PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2? , NO 3 ? , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9?C97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area.

Conclusion

According to the principal component analysis?Cmultivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.  相似文献   

3.
4.
5.
Temporal variations of atmospheric aerosol in four European urban areas   总被引:1,自引:0,他引:1  

Purpose

The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.

Methods

Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.

Results

The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 ??g/m3 in Helsinki to 56.7 ??g/m3 in Athens and from 9.0 ??g/m3 in Helsinki to 25.0 ??g/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?Conclusions Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.  相似文献   

6.
The present paper is based on results collected from the air quality network, which was assembled for covering the Oporto metropolitan area, in Portugal. Among the SO2 and PM10 levels obtained for the last two decades, a particular unpolluted year was chosen to evaluate the health effects of concentrations lower than those that usually cause acute episodes. It was observed that even low levels of SO2 could be related with the increase of obstructive chronic pulmonary diseases morbidity daily rates recorded in Oporto during the same year. When the relationship between levels of atmospheric pollution and human health is considered, climatic factors have a synergetic effect. The observation of respiratory symptoms for concentrations below the current ambient standards, in agreement with previous studies carried out in the same area and other countries, suggests that it is urgent the process of updating and revision of those values in order to protect in effect the health of populations. As particles have shown an important role on health impact, its characterisation was done, considering their respirable fractions. It was concluded that most of the total suspended particles are breathable. Moreover, more than 78% and 87% of the organic composition and of the carcinogenic agent benzo(a)pyrene content, respectively, are detected in particles liable to attain the respiratory tract.  相似文献   

7.
Seasonal variations in atmospheric aerosol concentration and composition have been determined at two nearby sites, one urban and one rural, near Leeds, W. Yorkshire. Aerosols, sampled on a daily basis and collected in the size ranges < 2.5 μm and 2.5−15 μm, were analysed for total mass, SO2−4, NO3, Cl and NH+4. Dark smoke and SO2 were also measured at both sites. Results are given covering the period October 1982–September 1983. The average concentration of particles was higher at the urban site. The urban-rural difference in coarse particle concentration, which was about a factor of 2, was more significant than the difference in the fine particle concentration, which was only 1.3. Smoke and SO2 concentrations showed strong wintertime maxima and summertime minima. Fine NO3 and Cl concentrations also had pronounced wintertime maxima and summertime minima attributed to the variation in volatility of their ammonium salts. Total mass, SO2−4 and NH+4 did not show any clear seasonal variations. Anti-cyclonic conditions in summer resulted in elevated mass concentrations of secondary pollutants, e.g. SO2−4. The fine fraction contained ca 50% water-soluble inorganic ions at Leeds and slightly more at the rural site. These proportions showed little seasonal variation.  相似文献   

8.
9.
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3.  相似文献   

10.
Samples of fine and coarse fractions of airborne particulate matter were collected at the Farm Gate area in Dhaka from July 2001 to March 2002. Dhaka is a hot spot area with very high pollutant concentrations because of the proximity of major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0- to 2.2-microm and 2.2- to 10-microm sizes. The samples were analyzed for elemental concentrations by particle-induced X-ray excitation (PIXE) and for black carbon by reflectivity methods, respectively. The data were analyzed by positive matrix factorization (PMF) to identify the possible sources of atmospheric aerosols in this area. Six sources were found for both the coarse and fine PM fractions. The data sets were also analyzed by an expanded model to explore additional sources. Seven and six factors were obtained for coarse and fine PM fractions, respectively, in these analyses. The identified sources are motor vehicle, soil dust, emissions from construction activities, sea salt, biomass burning/brick kiln, resuspended/fugitive Pb, and two-stroke engines. From the expanded modeling, approximately 50% of the total PM2.2 mass can be attributed to motor vehicles, including two-stroke engine vehicle in this hot spot in Dhaka, whereas the PMF modeling indicates that 45% of the total PM2.2 mass is from motor vehicles. The PMF2 and expanded models could resolve approximately 4% and 3% of the total PM2.2 mass as resuspended/fugitive Pb, respectively. Although, Pb has been eliminated from gasoline in Bangladesh since July 1999, there still may be substantial amounts of accumulated lead in the dust near roadways as well as fugitive Pb emissions from battery reclaimation and other industries. Soil dust is the largest component of the coarse particle fraction (PM2.2-10) accounting for approximately 71% of the total PM2.2-10 mass in the expanded model, whereas from the PMF modeling, the dust (undifferentiated) contribution is approximately 49%.  相似文献   

11.
The average hourly variation of particle concentration and its charged fraction has been determined in the city of Oviedo (Spain). The population density in the central zone of Oviedo, a city of 180,000 inhabitants, is one of the highest in Europe. The city is not very industrialized.The average particle size distribution in winter and summer has been studied resulting in unimodal spectra, which are fitted to a log-normal distribution.It has been demonstrated that the average distributions in the city of Oviedo are a direct consequence of two primary sources, traffic and heating systems.  相似文献   

12.
Aerosol water content (AWC) of urban atmospheric particles was investigated based on the hygroscopic growth measurements for 100 and 200 nm particles using a hygroscopicity tandem differential mobility analyzer in Sapporo, Japan in July 2006. In most of the humidogram measurements, presence of less and more hygroscopic mode was evident from the different dependence on relative humidity (RH). The volume of liquid water normalized by that of dry particle (Vw(RH)/Vdry) was estimated from the HTDMA data for 100 and 200 nm particles. The RH dependence of Vw(RH)/Vdry was well represented by a fitted curve with a hygroscopicity parameter κeff. The κeff values for 200 nm particles were in general higher than those for 100 nm particles, indicating a higher hygroscopicity of 200 nm particles. Based on the κeff values, the volume mixing ratios of water-soluble inorganic compounds (ammonium sulfate equivalent) were estimated to be on average 31% and 45% for 100 and 200 nm particles, respectively. The diurnal variation of κeff, with relatively higher values in the noontime and nighttime and lower values in the morning and evening hours, was observed for both particle sizes. The Vw(RH)/Vdry values under ambient RH conditions were estimated from κeff to range from 0.05 to 2.32 and 0.06 to 2.43 for 100 nm and 200 nm particles, respectively. The degree of correlation between κeff and Vw(RH)/Vdry at ambient RH suggests a significant contribution of the variation of κeff to atmospheric AWC in Sapporo.  相似文献   

13.
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

14.
In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter < or = 10 microm [PM10]) and ozone (03) concentrations and characterize the atmospheric conditions that lead to 03 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and 03 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in 03 values was also observed and discussed.  相似文献   

15.
16.
17.
The processes occurring during the initial stages of size-selected sampling of atmospheric aerosol matter were explored by means of high-resolution scanning electron microscopy and energy dispersive X-ray spectrometry. The final four stages of a Berner impactor served to collect particles with aerodynamic diameters between 60 nm and 1 μm on polished silicon substrates at sampling times between 10 s and 16 min. In the single-particle impact regime (fractional coverage below 5%), most of the particles produced circular black tracks, of which 15 to 30% contained cores of carbonaceous nanoparticles. At a fractional coverage above about 10%, initially generated deposits became increasingly active as centres of preferred aerosol collection. As a result, the number of black spots remained almost constant, but the area per spot increased rapidly. At this stage of fractional coverage, structured aerosol matter became visible within large black areas of random shape. The deposits showed clear evidence for the onset of phase separation between carbon nanoparticles and material rich in sulphur, probably a mixture of alkaline and alkaline earth sulphates. After some time of sample storage in air the low-coverage sulphate matter tended to attain a fractal pattern. At a fractional coverage of several hundred per cent, large amorphous or crystalline objects had grown, but 30% or more of the nominal impact area still did not contain any aerosol matter. Moreover, carbon nanoparticles were found to be phase separated from the newly grown, very uniform aerosol material. The observations imply that sub-micrometer aerosol matter collected in impactors has lost memory of the original particle morphology.  相似文献   

18.
The main purpose of this study was to evaluate the contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area (Portugal) since the 19th century. The study was based on pre-industrial and recent data series, the results being analyzed according to the atmospheric chemistry. The treatment of ozone and meteorological data was performed by classical statistics and by time-series analysis. It was concluded that in the 19th century the ozone present in the troposphere was not of photochemical origin, being possible to consider the respective concentrations as reference values. For recent data a cycle of 8h for ozone concentrations could be related to traffic. Compared to the 19th century, the current concentrations were 147% higher (252% higher in May) due to the increased photochemical production associated with the increased anthropogenic emissions.  相似文献   

19.
20.
Several studies indicate that mortality and morbidity can be well correlated to atmospheric aerosol concentrations with aerodynamic diameter less than 2.5 µm (PM2.5). In this work the PM2.5 at Recife city was analyzed as part of a main research project (INAIRA) to evaluate the air pollution impact on human health in six Brazilian metropolitan areas. The average concentration, for 309 samples (24-hr), from June 2007 to July 2008, was 7.3 µg/m³, with an average of 1.1 µg/m³ of black carbon. The elemental concentrations of samples were obtained by x-ray fluorescence. The concentrations were then used for characterizing the aerosol, and also were employed for receptor modelling to identify the major local sources of PM2.5. Positive matrix factorization analysis indicated six main factors, with four being associated to soil dust, vehicles and sea spray, metallurgical activities, and biomass burning, while for a chlorine factor, and others related to S, Ca, Br, and Na, we could make no specific source association. Principal component analysis also indicated six dominant factors, with some specific characteristics. Four factors were associated to soil dust, vehicles, biomass burning, and sea spray, while for the two others, a chlorine- and copper-related factor and a nickel-related factor, it was not possible to do a specific source association. The association of the factors to the likely sources was possible thanks to meteorological analysis and sources information. Each model, although giving similar results, showed factors’ peculiarities, especially for source apportionment. The observed PM2.5 concentration levels were acceptable, notwithstanding the high urbanization of the metropolitan area, probably due to favorable conditions for air pollution dispersion. More than a valuable historical register, these results should be very important for the next analysis, which will correlate health data, PM2.5 levels, and sources contributions in the context of the six studied Brazilian metropolises.
Implications: The analysis of fine particulate matter (PM2.5) in Recife city, Brazil, gave a significant picture of the local concentration and composition of this pollutant, which exhibits robust associations to adverse human health effects. Data from 1 year of sampling evaluated the seasonal variability and its connections with weather patterns. Source apportionment in this metropolitan area was obtained based in a combination of receptor models: principal component analysis (PCA)/chemical mass balance (CMB) and positive matrix factorization (PMF). These results give guidelines for local air pollution control actions, providing significant information for a health study in the context of establishing a new national air pollution protocol based on Brazilian cities data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号