首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the host city of the 2008 Olympic games, Beijing implemented a series of air pollution control measures before and during the Olympic games. Ambient formaldehyde (HCHO) concentrations were measured using a fluorometric instrument based on a diffusion scrubber and the Hantzsch reaction; hydrocarbons were simultaneously measured using gas chromatography–mass spectrometry (GC–MS). Meteorological parameters, CO, O3, and NO2 concentrations were measured by standard commercial instrumentation. In four separate periods: (a) before the vehicle plate number control (3–19 July); (b) during the Olympic Games (8–24 August); (c) during the Paralympic Games (6–17 September) and (d) after the vehicle control was ceased (21–28 September), the average HCHO mixing ratios were 7.31 ± 2.67 ppbv, 5.54 ± 2.41 ppbv, 8.72 ± 2.48 ppbv, and 6.42 ± 2.79 ppbv, while the total non-methane hydrocarbons (NMHCs) measured were 30.41 ± 18.08 ppbv, 18.12 ± 9.38 ppbv, 30.50 ± 13.37 ppbv, and 33.33 ± 15.85 ppbv, respectively. Both HCHO and NMHC levels were the lowest during the Olympic games, and increased again during the Paralympic games even with the same vehicle control measures operative. Similar diurnal HCHO and O3 patterns indicated that photo-oxidation of NMHCs may be the major source of HCHO. The diurnal profile of total NMHCs was very similar to that of NO2 and CO: morning and evening peaks appeared in rush hours, indicating even after strict vehicle control, automobile emission may still be the dominant source of the HCHO precursors. The contributions of HCHO, alkanes, alkenes, and aromatics to OH loss rates were also calculated. HCHO contributed 22 ± 3% to the total VOCs and 24 ± 1% to the total OH loss rate. HCHO was not only important in term of abundance, but also important in chemical reactivity in the air.  相似文献   

2.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   

3.
Abnormally low ozone (O3) mixing ratios were observed by electrochemical concentration cell (ECC) ozonesondes in the upper troposphere over subtropical East Asia in spring 2004, a season when high tropospheric O3 is usually observed in the region. Low O3 with a lowest mixing ratio of 13 ppbv, less than a fourth of the respective seasonal average of 60–100 ppbv, was observed at 11–18 km above ground over Hong Kong (22.31°N, 114.17°E), Sanya (18.23°N, 109.52°E) and Taipei (24.98°N, 121.43°E). The origin of the low O3 was investigated using meteorological evidence, satellite imagery and three-dimensional backward air trajectory. We found for the first time that the low O3 resulted from deep convective pumping of low O3 maritime air masses near the center of typhoon Sudal from the boundary layer of the tropical region to the east of the Philippines to the upper troposphere. The low O3 air masses were then transported to the higher latitudes far ahead of the typhoon following the long-range transport driven by the circulations associated with the typhoon and the northern Hadley cell. The findings of this study highlight that more research efforts are needed to understand the effect of the circulation associated with tropical cyclones on the distribution and budget of O3 and other trace gases in the troposphere.  相似文献   

4.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

5.
Simultaneous measurements of ammonia and nitric acid in ambient air were conducted at Dayalbagh, Agra using the mist chamber technique. The sampling site is located near a cattle shed. A total of 120 samples were collected during the period July–September and November–February (1997–1998). Sampling was performed during six different times a day. Gas-phase HNO3 was estimated as NO3 using ion chromatographic technique while ammonia was determined colorimetrically as NH4+ using indophenol blue method. The mean levels of NH3 and HNO3 for the entire data set were 16.3±2.8 and 1.6±1.4 ppbv, respectively. In the monsoon, mean values for NH3 and HNO3 averaged to 16.4±3.5 and 0.9±0.7 ppbv while the winter means were 11.8±4.4 and 2.1±1.2 ppbv, respectively. Concentration of both the species (NH3 and HNO3) did not show any significant diurnal behaviour in both the seasons. However, concentration of both NH3 and HNO3 were lower at dawn than the previous night's value. This has been ascribed to their removal through dew. Concentrations of HNO3 are observed to increase during the daytime, consistent with its formation by photochemical reactions. Nitric acid and ammonia concentrations show a significant seasonal variation. Levels of HNO3 are higher in winter but lower in monsoon, while ammonia shows a reverse trend with higher monsoon and lower winter values. Observed trends in nitric acid and ammonia concentration are due to seasonal variation in emission sources, chemistry and meteorology. Gaseous ammonia and nitric acid are in equilibrium with NH4NO3 (solid or aqueous) in the atmosphere. The existence of this equilibrium was examined from simultaneous measurements of NH3 and HNO3 in the ambient air. It is found that for the monsoon data, measured concentrations are qualitatively below the predicted equilibrium value, while in the winter, concentration product ([NH3] [HNO3]) lies consistently above the predicted values. These deviations may be explained due to local sources of both [NH3] and [HNO3], presence of coarse nitrate particles and low-temperature and high-humidity conditions.  相似文献   

6.
The effect of HOx radicals (OH and HO2) and ozone (O3) on aerosol formation and aging has been studied. Experiments were performed in presence as well as in absence of oxygen in a flow-through chamber at 299 K for three organic precursor gases, isoprene, α-pinene and m-xylene. The HOx source was the UV photolysis of humidified air or nitrogen and was measured with a GTHOS (Ground-based Tropospheric Hydrogen Oxides Sensor). The precursor gases concentration was monitored with an online GC-FID. The aerosol mass was then quantified by a Tapered Element Oscillating Microbalance (TEOM). Typical oxidant mixing ratios were (0–4.5) ppm for O3, 200 pptv for OH and 3 ppbv for HO2. A simple kinetics model is used to infer the aerosol production mechanism. In the present of O3 (or O2), the SOA yields were 0.46, 0.036 and 0.12 for α-pinene with an initial concentration of 100 ppbv (RH = 37%), isoprene with an initial concentration of 177 ppbv (RH = 50%) and m-xylene with an initial concentration of 100 ppbv (RH = 37%), respectively. When the chosen precursor gases reacted with HOx in the absence of O3, the maximum SOA yields were significantly increased by factors of 1.6 for isoprene 1.1 for α-pinene, and 3 for m-xylene respectively. The comparison of the calculated and measured potential aerosol mass concentrations as function of time shows that presence of ozone or oxygen can influence the aerosol yield and the absence of ozone or oxygen in the system resulted in high concentrations of its organic aerosol products.  相似文献   

7.
The nocturnal boundary layer in Houston, Texas was studied using a high temporal and vertical resolution tethersonde system on four nights during the Texas Air Quality Study II (TexAQS II) in August and September 2006. The launch site was on the University of Houston campus located approximately 4 km from downtown Houston. Of particular interest was the evolution of the nocturnal surface inversion and the wind flows within the boundary layer. The land–sea breeze oscillation in Houston has important implications for air quality as the cycle can impact ozone concentrations through pollutant advection and recirculation. The results showed that a weakly stable surface inversion averaging in depth between 145 and 200 m AGL formed on each of the experiment nights, typically within 2–3 h after sunset. Tethersonde vertical winds were compared with two other Houston data sets (High Resolution Doppler Lidar and radar wind profiler) from locations near the coastline and good agreement was found, albeit with a temporal lag at the tethersonde site. This comparison revealed development of a land breeze on three nights which began near the coastline and propagated inland both horizontally and vertically with time. The vertical temperature structure was significantly modified on one night at the tethersonde site after the land breeze wind shift, exhibiting near-adiabatic profiles below 100 m AGL.  相似文献   

8.
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors.  相似文献   

9.
Shanghai Meteorological Administration has established a volatile organic compounds (VOCs) laboratory and an observational network for VOCs and ozone (O3) measurements in the city of Shanghai. In this study, the measured VOCs and O3 concentrations from 15 November (15-Nov) to 26 November (26-Nov) of 2005 in Shanghai show that there are strong day-to-day and diurnal variations. The measured O3 and VOCs concentrations have very different characterizations between the two periods. During 15-Nov to 21-Nov (defined as the first period), VOCs and O3 concentrations are lower than the values during 22-Nov to 28-Nov (defined as the second period). There is a strong diurnal variation of O3 during the second period with maximum concentrations of 40–80 ppbv at noontime, and minimum concentrations at nighttime. By contrast, during the first period, the diurnal variation of O3 is in an irregular pattern with maximum concentrations of only 20–30 ppbv. The VOC concentrations change rapidly from 30–50 ppbv during the first period to 80–100 ppbv during the second period. Two chemical models are applied to interpret the measurements. One model is a regional chemical/dynamical model (WRF-Chem) and another is a detailed chemical mechanism model (NCAR MM). Model analysis shows that the meteorological conditions are very different between the two periods, and are mainly responsible for the different chemical characterizations of O3 and VOCs between the two periods. During the first period, meteorological conditions are characterized by cloudy sky and high-surface winds in Shanghai, resulting in a higher nighttime planetary boundary layer (PBL) and faster transport of air pollutants. By contrast, during the second period, the meteorological conditions are characterized by clear sky and weak surface winds, resulting in a lower nighttime PBL and slower transport of air pollutants. The chemical mechanism model calculation shows that different VOC species has very different contributions to the high-ozone concentrations during the second period. Alkane (40 ppbv) and aromatic (30 ppbv) are among the highest VOC concentrations observed in Shanghai. The analysis suggests that the aromatic is a main contributor for the O3 chemical production in Shanghai, with approximately 79% of the O3 being produced by aromatic. This analysis implies that future increase in VOC (especially aromatic) emissions could lead to significant increase in O3 concentrations in Shanghai.  相似文献   

10.
Carbon monoxide (CO) measurements have been performed in a forested site in central Greece in the framework of the AEROBIC (AEROsol formation from Biogenic Carbon) campaign in summer 1997. The mean CO observed during the whole campaign ranged between 114 and 250 ppbv (mean of 170±27 ppbv), reflecting continental influence. The observed mean diurnal cycle of CO presented a minimum in the early morning due to the efficient deposition of CO in a shallow nocturnal layer sealed from the free tropospheric air during the night (loss rates of about 2 ppbv h−1). In the early morning and in the late afternoon, a sharp and fluctuating increase of CO was observed as the consequence of CO primary sources, likely by local traffic as suggested by the concomitant enhancements of black carbon (BC) and other combustion tracers. The morning pollution peak (6:30–8:30 local time) preceded slightly the opening of the nocturnal layer to the free troposphere, which resulted in CO reduction down to background levels at about 10:00. During the day (10:00–17:00), a slight but regular increase was observed on CO levels. For lack of simultaneous increase of other anthropogenic tracers, this CO enhancement has been attributed to its photochemical formation initiated by the oxidation of reactive biogenic hydrocarbons. This observed net production of CO averaging 1.2 ppbv h−1 is quite well reproduced by a box model containing an explicit chemical scheme of isoprene and α- and β-pinene and taking into account the measured mixing ratios and the reactivity of all biogenic organic reactive compounds when uncertainties in measurements and modelling are considered.  相似文献   

11.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

12.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

13.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

14.
This paper examines the impact of tripled anthropogenic emissions from China and India over the base level (gaseous species and carbonaceous aerosols for 2000) on air quality over the U.S. using the WRF/Chem (Weather Research and Forecasting – Chemistry) model at 1° resolution. WRF/Chem is a state-of-the-science, fully coupled chemistry and meteorology system suitable for simulating the transport and dispersion of pollutants and their impacts. The analyses in this work were focused on MAM (March, April and May). The simulations indicate an extensive area of elevated pollutant concentrations spanning from the Arabian Sea to the Northern Pacific and to the Northern Atlantic. MAM mean contributions from the tripled Asian emissions over the U.S. are found to be: 6–12 ppbv for CO, 1.0–2.5 ppbv for O3, and 0.6–1.6 μg m?3 for PM2.5 on a daily basis.  相似文献   

15.
The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study – Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west–northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50–60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O3 that peaked at 120 ppbv at a short distance (15–25 km) downwind of Nashville. Ozone productivity (the ratio of excess O3 to NOy and NOz) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.  相似文献   

16.
The rate constant for the reaction of diethyl sulfide (DES; C2H5SC2H5) with ozone was determined for the first time, which was (2.77±0.27)×10−19 cm3 molecule−1 s−1 under a room temperature of (289±1) K. Experiments were conducted under supposedly pseudo-first-order decay conditions, keeping [DES]0>50[O3]0, but having different combinations of [DES]0 and [O3]0. Cyclohexane was added into the reactor to eliminate the effect of OH radicals. The wall decay of ozone and the role of cyclohexane were also discussed in the present work.  相似文献   

17.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

18.
Formaldehyde (HCHO), as well as correlative pollutants was measured from 1 to 31 July in 2007 at Mazhuang, a rural site located in the east of China. Gaseous HCHO was scrubbed from the air with an acidic 2,4-dinitrophenylhydrazine (DNPH) solution, which leaded to the reaction of HCHO with DNPH and produced a stable product, 2,4-dinitrophenylhydrazone, followed by online analysis by high-performance liquid chromatography (HPLC) coupled with Ultraviolet detector. During the observation period, mixing ratios of HCHO ranged from 0.2 ppbv to 6.2 ppbv, with an average of 1.5 ± 0.67 ppbv. HCHO shows an evident diurnal variation, the maximum appeared during 12:00–14:00. The average concentration diurnal variations of measured HCHO, ozone (O3), Methylhydroperoxides (MHP, CH3OOH), hydrogen peroxide (H2O2), nitrogen oxides (NOx) and meteorological parameters were compared. The similar variations of HCHO, O3 and radiation imply that photo-oxidation of hydrocarbons might be the major source for HCHO. Based on the maximum incremental reactivity (MIR) coefficient of HCHO, the calculation shows that HCHO contributes about 20% to total observed O3 during the study period. In order to compare the contributions of O3, HCHO and HONO to OH radical, photolysis rate parameters (J-values) of the three compounds were calculated by the Tropospheric Ultraviolet and Visible (TUV) Radiation Model (4.4 version). Based on the comparison, this study reaches the conclusion that O3 is the dominant source of OH radical at Mazhuang. This study also uses P(HCHO)/P(O3) which represents the ratio of contrbutions of HCHO and O3 to OH radical, to discuss the action of HCHO in OH radical soucers. The result shows that P(HCHO)/P(O3) is 12.5% on average, with the maximum of 21.0% at 13:00P.M. and minimum of 7.5% before 9:00A.M. and after 17:00P.M..Therefore HCHO is also an important source of OH radical and cannot be ignored.  相似文献   

19.
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O3] was expressed relative to the yield under base [O3] (≤26 ppb). With potato, current [O3] (31–50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O3], future [O3] (51–75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O3]. These findings confirm the rising [O3] as a threat to food security for the growing global population in this century.  相似文献   

20.
Concentrations of CO, SO2, NO, NO2, and NOY were measured atop the University of Houston's Moody Tower supersite during the 2006 TexAQS-II Radical and Aerosol Measurement Project (TRAMP). The lowest concentrations of all primary and secondary species were observed in clean marine air in southerly flow. SO2 concentrations were usually low, but increased dramatically in sporadic midday plumes advected from sources in the Houston Ship Channel (HSC), located NE of the site. Concentrations of CO and NOx displayed large diurnal variations in keeping with their co-emission by mobile sources in the Houston Metropolitan Area (HMA). CO/NOx emission ratios of 5.81 ± 0.94 were observed in the morning rush hour. Nighttime concentrations of NOx (NOx = NO + NO2) and NOY (NOY = NO + NO2 + NO3 + HNO3 + HONO + 21N2O5 + HO2NO2 + PANs + RONO2 + p-NO3? + …) were highest in winds from the NNW-NE due to emission from mobile sources. Median ratios of NOx/NOY were approximately 0.9 overnight, reflecting the persistence and/or generation of NOZ (NOZ = NOY ? NOx) species in the nighttime Houston boundary layer, and approached unity in the morning rush hour. Daytime concentrations of NOx and NOY were highest in winds from the HSC. NOx/NOY ratios reached their minimum values (median ca 0.63) from 1300 to 1500 CST, near local solar noon, and air masses often retained enough NOx to sustain additional O3 formation farther downwind. HNO3 and PANs comprised the dominant NOZ species in the HMA, and on a median basis represented 17–20% and 12–15% of NOY, respectively, at midday. Concentrations of HNO3, PANs, and NOZ, and fractional contributions of these species to NOY, were at a maximum in NE flow, reflecting the source strength and reactivity of precursor emissions in the HSC. As a result, daytime O3 concentrations were highest in air masses with HSC influence. Overall, our findings confirm the impact of the HSC as a dominant source region within the HMA. A comparison of total NOY measurements with the sum of measured NOY species (NOYi = NOx + HNO3 + PANs + HONO + p-NO3?) yielded excellent overall agreement during both day ([NOY](ppb) = ([NOYi](ppb)11.03 ± 0.16) ? 0.42; r2 = 0.9933) and night ([NOY](ppb) = ([NOYi](ppb)11.01 ± 0.16) + 0.18; r2 = 0.9975). A similar comparison between NOY–NOx concentrations and the sum of NOZi (NOZi = HNO3 + PANs + HONO + p-NO3?) yielded good overall agreement during the day ([NOZ](ppb) = ([NOZi](ppb)11.01 ± 0.30) + 0.044 ppb; r2 = 0.8527) and at night ([NOZ](ppb) = ([NOZi](ppb)11.12 ± 0.69) + 0.16 ppb; r2 = 0.6899). Median ratios of NOZ/NOZi were near unity during daylight hours but increased to approximately 1.2 overnight, a difference of 0.15–0.50 ppb. Differences between NOZ and NOZi rarely exceeded combined measurement uncertainties, and variations in NOZ/NOZi ratios may have resulted solely from errors in conversion efficiencies of NOY species and changes in NOY composition. However, nighttime NOZ/NOZi ratios and the magnitude of NOZ ? NOZi differences were generally consistent with recent observations of ClNO2 in the nocturnal Houston boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号