首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
This paper reports on the development of a land use regression (LUR) model for predicting the intraurban variation of traffic-related air pollution in Hamilton, Ontario, Canada, an industrial city at the western end of Lake Ontario. Although land use regression has been increasingly used to characterize exposure gradients within cities, research to date has yet to test whether this method can produce reliable estimates in an industrialized location. Ambient concentrations of nitrogen dioxide (NO2) were measured for a 2-week period in October 2002 at > 100 locations across the city and subsequently at 30 of these locations in May 2004 to assess seasonal effects. Predictor variables were derived for land use types, transportation, demography, and physical geography using geographic information systems. The LUR model explained 76% of the variation in NO2. Traffic density, proximity to a highway, and industrial land use were all positively correlated with NO2 concentrations, whereas open land use and distance from the lake were negatively correlated with NO2. Locations downwind of a major highway resulted in higher NO2 levels. Cross-validation of the results confirmed model stability over different seasons. Our findings demonstrate that land use regression can effectively predict NO2 variation at the intraurban scale in an industrial setting. Models predicting exposure within smaller areas may lead to improved detection of health effects in epidemiologic studies.  相似文献   

2.
We developed regression equations to predict fine particulate matter (PM2.5) at air monitoring locations in the New York City region using data on nearby traffic and land use patterns. Three-year averages (1999–2001) of PM2.5 at US Environmental Protection Agency (EPA) monitors in the 28 counties including and surrounding New York City were calculated using daily data from the EPA's Air Quality Subsystem. As the secondary contribution to PM2.5 concentrations is lowest in the winter, we also calculated and modeled average winter 2000 PM2.5 to conduct a preliminary evaluation of model sensitivity to source contribution. Candidate predictor variables included traffic, land use, census and emissions data from local, state and national sources and were tabulated for a series of circular buffer regions at varying distances around the monitors using a geographic information system. In total, more than 25 variables at 5 different buffer distances were considered for inclusion in the model. Before evaluating the variables we removed several samples from the modeling for validation. For comparison and validation purposes we computed both a model using data for the full 28-county region as well as a more urbanized 9-county region. We found that traffic within a buffer of 300 or 500 m explains the greatest proportion of variance (37–44%) in all 3 models. Measures of urbanization, specifically population density, explain a significant amount of the residual variation (7–18%) after including a traffic variable. Finally, a measure of industrial land use further improves the 28-county and 9-county models based on the 3-yr annual averages, explaining an additional 4% and 11% of the variation, respectively, while vegetative land use improves the winter model explaining an additional 6%. The final models predicted well at validation locations. In total, the final land use regression models explain between 61% and 64% of the variation in PM2.5.  相似文献   

3.
4.
While emission rates of volatile organic compounds (VOCs) have been obtained for building materials, furnishings and processes in chambers, field measurements are more difficult. Procedures to estimate emission rates using transient analysis of VOC concentrations are described and applied in a two-story classroom/office building. The analysis employs semi-real-time VOC concentrations determined with a portable GC/FID and simultaneous air change rate measurements using tracer gas decay. The results of the analysis yield consistent values of emission rates for building materials ranging from 0.20 to 0.40 mg m−2 h−1 when normalized by floor area. Occupancy-related emissions were more difficult to estimate and covered a wider range from roughly 0.1 to 1.5 mg m−2 h−1. The test data were also analyzed in an attempt to determine sink parameters, but these efforts were not particularly successful. Furthermore, in these tests, the inclusion of sink effects did not significantly impact the estimated emission rates. While this paper offers a transient analysis approach that may lead to improved field estimates of VOC emission rates, it is not presented as a definitive methodology. Nevertheless, transient analysis has potential for use in other buildings, but simultaneous air change rate measurements are critical in its application in estimating VOC emission rates in the field.  相似文献   

5.
A methodology is developed to include wind flow effects in land use regression (LUR) models for predicting nitrogen dioxide (NO2) concentrations for health exposure studies. NO2 is widely used in health studies as an indicator of traffic-generated air pollution in urban areas. Incorporation of high-resolution interpolated observed wind direction from a network of 38 weather stations in a LUR model improved NO2 concentration estimates in densely populated, high traffic and industrial/business areas in Toronto-Hamilton urban airshed (THUA) of Ontario, Canada. These small-area variations in air pollution concentrations that are probably more important for health exposure studies may not be detected by sparse continuous air pollution monitoring network or conventional interpolation methods. Observed wind fields were also compared with wind fields generated by Global Environmental Multiscale-High resolution Model Application Project (GEM-HiMAP) to explore the feasibility of using regional weather forecasting model simulated wind fields in LUR models when observed data are either sparse or not available. While GEM-HiMAP predicted wind fields well at large scales, it was unable to resolve wind flow patterns at smaller scales. These results suggest caution and careful evaluation of regional weather forecasting model simulated wind fields before incorporating into human exposure models for health studies. This study has demonstrated that wind fields may be integrated into the land use regression framework. Such integration has a discernable influence on both the overall model prediction and perhaps more importantly for health effects assessment on the relative spatial distribution of traffic pollution throughout the THUA. Methodology developed in this study may be applied in other large urban areas across the world.  相似文献   

6.
Microwave process for volatile organic compound abatement   总被引:5,自引:0,他引:5  
The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

7.
The results of a European level intercomparison involving measurements of 26 hydrocarbons (from C2 to C9) at ambient air concentration level are discussed. On-line sampling with cryo-GC-FID analysis was the most commonly used methodology among the 20 participating laboratories. The stability of the gas samples in the canisters; the calibration methodology, the separation of peaks and the low level of concentrations were identified as the most important factors, which contributed to the increase in the uncertainty of the measurement. Uncertainty values associated with the common method used for the quantification of each compound and exercise were also determined.  相似文献   

8.
Biogenic volatile organic compounds (BVOCs) in the atmosphere react to form ozone and secondary organic aerosols, which deteriorate air quality, affect human health, and indirectly influence global climate changes. The present study aims to provide a preliminary assessment of BVOC emissions in Hong Kong (HKSAR). Thriteen local tree species were measured for their isoprene emission potential. Tree distribution was estimated for country park areas based on field survey data. Plant emission data obtained from measurements and the literature, tree distribution estimation data, land use information, and meteorological data were combined to estimate annual BVOC emissions of 8.6×109 g C for Hong Kong. Isoprene, monoterpenes, and other VOCs contributed about 30%, 40%, and 30% of the estimated total annual emissions, respectively. Although hundreds of plant species are found in Hong Kong country parks, the model results indicate that only 10 tree species contribute about 76% of total annual VOC emissions. Prominent seasonal and diurnal variations in emissions were also predicted by the model. The present study lays a solid foundation for future local research, and results can be applied for studying BVOC emissions in nearby southern China and Asian regions that share similar climate and plant distributions.  相似文献   

9.
The measurements of C2–C9 volatile organic compounds (VOC) were carried out at a site in Seoul, the capital of Korea from August 1998 to July 1999. Air samples were collected for 24 h in 6 l SUMMA canisters every 6 days. The canister samples were quantitatively analyzed by a GC/FID and GC/MS. The species with the highest mean concentration among the 70 identified was propane (7.8 ppb), followed by toluene (6.4 ppb) and ethylene (5.9 ppb). The high concentration of propane was mainly attributed to the emissions by liquefied petroleum gas (LPG) usage for cooking and heating, and butane fuel for transportation. The general trend of the seasonal variation shows higher concentrations in winter and lower ones in summer. This behavior was mainly caused by the variations of temperature, and resultant VOC source strengths, coupled with the variations of the mixing depth. According to the analysis of concentration ratios, the seasonal contributions of the major emission sources to the VOC concentrations were influenced by ambient temperature. Further, it was identified that the contributions by the use of solvents, natural gas, LPG, and butane fuel were closely related to the variations of consumption pattern according to seasons. Through the analysis of the concentration correlations between less reactive compound and highly reactive ones for summer and winter months, it was found that photochemical reactivity affects relative concentration of reactive compound.  相似文献   

10.
Twenty-four-hour integrated ambient air samples were collected in canisters at 10 locations within Kuwait’s major power station: Doha West Power Station to assess the spatial distribution of volatile organic compounds (VOCs) within the perimeter of the station. A total of 30 samples, i.e., three samples per location, were collected during February and March. The samples were analyzed using a gas chromatography with flame ionization detection (GC-FID) system and following the U.S. EPA Method TO-14A with modification. The results reflected the emission activities on the site and the meteorological conditions during sampling. Generally speaking, there was a negative correlation between the ambient temperature and the VOC concentrations, which indicates the sources were local. The halogenated compounds formed the highest proportion (i.e. 50–75 %) of the total VOC concentrations at the ten locations. 1,2,4-Trichlorobenzene and Vinyl Chloride concentrations were the highest amongst the other halogenated compounds. The aromatic compounds formed the least proportion (i.e. 1–4%) of the total VOC levels at all locations with Toluene having the highest concentrations amongst the aromatic compounds at seven locations. Propene, which is a major constituent of the fuel used, was the highest amongst the aliphatic compounds. The findings of this study and other relevant work suggests the measured VOC levels were the highest over the year, nevertheless, further work is required to assess the precisely temporal variation of VOC due to change in meteorological conditions and the emission rates.

Implications: Assessment of VOC concentrations around a power plant in Kuwait during the peak season showed halogenated compounds to be the dominant group. The calculated indoor concentrations were lower than those reported in a residential area about 12 km away.  相似文献   


11.
The city of Missoula is located in a high mountain valley (elevation 3200 ft.) in western Montana and contains one of the largest populations in the entire Rocky Mountain Region completely enclosed by mountains. During the 2000/2001 Missoula Valley Sampling Program, ambient levels of 61 semivolatile organic compounds (SVOCs) and 54 volatile organic compounds (VOCs) were originally quantified before refining the analytical program to 28 of the most prominent SVOCs and VOCs found in the Missoula Valley airshed. These compounds were measured over 24-hr periods at two locations throughout an entire year. This study provides the first, comprehensive appraisal of the levels of SVOCs and VOCs measured simultaneously throughout all four seasons at two locations in the Missoula Valley, including those levels measured during the 2000 Montana wildfire season. Generally, SVOC levels were comparable between both sides of the Missoula Valley. However, there were nearly double the amount of VOCs measured at the more urban Boyd Park site compared with the rural Frenchtown sampling site, a result of the greater number of automobiles on the eastern side of the Valley. SVOCs and VOCs were measured at their highest levels of the sampling program during the winter. Forest fire smoke samples collected during the summer of 2000 showed significant increases in SVOC phenolic compounds, including phenol, 2-methylphenol, 4-methylphenol, and 2,4-dimethylphenol. Although there were modest increases in some of the other SVOCs and VOCs measured during the fire season, none of the increases were as dramatic as the phenolics.  相似文献   

12.
We developed a diffusive sampling device (DSD-voc) for volatile organic compounds (VOCs) which is suitable for collection of low level VOCs and analysis with thermal desorption. This sampling device is composed of two parts, an exposure part made of a porous polytetrafluoroethylene (PTFE) filter, and an analysis part made of stainless-steel tubing. The DSD-voc collects VOCs through the mechanism of molecular diffusion. Collection is controlled by moving the adsorbent from the exposure part to the analysis part by changing the posture of the DSD-voc. Adsorbates in the DSD-voc were analyzed by GC/MS with a thermal desorption cold trap injector (TCT). The TCT has the advantage of being able to accept the entire quantity of VOCs. We connected a condenser between the DSD-voc and the trap tube to prevent moisture from freezing in the trap tube when the sampler was packed with strong adsorbent. We also examined the desorption efficiency for VOCs from several types of adsorbents (CarboxenTM 1000, CarbosieveTM G, Carbosieve S III, CarbotrapTM B, and activated carbon) over a wide range of temperatures. Carboxen 1000 was suitable for the determination of VOCs with a low boiling point range, from CFC12 to hexane, while Carbotrap B was suitable for VOCs from hexane to 1,4-dichlorobenzene. The limits of detection with Carboxen 1000 and Carbotrap B were 0.036–0.046 and 0.0035–0.014 ppb, respectively, for a sampling duration of 24 h. Coefficients of variation for concentrations of major VOCs ranged from 3.8 to 14%. It is possible to estimate atmospheric VOCs at sub-parts per billion (sub-ppb), with high sensitivity, by using both adsorbents in combination.  相似文献   

13.
Determination of volatile organic compounds (VOCs) formed one part of the EU-EXPOLIS project in which the exposure of European urban populations to particles and gaseous pollutants was studied. The EXPOLIS study concentrated on 30 target VOCs selected on the basis of environmental and health significance and usability of the compounds as markers of pollution sources. In the project, 201 subjects in Helsinki, 50 in Athens, 50 in Basel, 50 in Milan and, 50 in Oxford and 50 in Prague were selected for the final exposure sample. The microenvironmental and personal exposure concentrations of VOCs were the lowest in Helsinki and Basel, while the highest concentrations were measured in Athens and Milan; Oxford and Prague were in between. In all cities, home indoor air was the most significant exposure agent. Workplace indoor air concentrations measured in this study were generally lower than the home indoor concentrations and home outdoor air played a minor role as an exposure agent. When estimating the measured personal exposure concentrations using the measured concentrations and time fractions spent at home indoors, at home outdoors, and at the workplace, it could be concluded that these three microenvironments do not fully explain the personal exposure. Other important sources for personal exposure must be encountered, the most important being traffic/transportation and other indoor environments not measured in this study.  相似文献   

14.
A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO2 generation rates were 0.0068–0.0092 l s−1. The per occupant isoprene generation rates of 0.2–0.3 mg h−1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source control measures, in addition to adequate ventilation, are required to limit concentrations of VOCs in office buildings.  相似文献   

15.
Carbon monoxide monitoring using continuous samplers is carried out in most major urban centres in the world and generally forms the basis for air quality assessments. Such assessments become less reliable as the proportion of data missing due to equipment failure and periods of calibration increases. This paper presents a semi-empirical model for the prediction of atmospheric carbon monoxide concentrations near roads for the purpose of interpolating missing data without the need for any traffic or emissions information. The model produces reliable predictions while remaining computationally simple by being site-specifically optimized. The model was developed for, and evaluated at, both a suburban site and an inner city site in Hamilton, New Zealand. Model performance statistics were found to be significantly better than other simple methods of interpolation with little additional computational complexity.  相似文献   

16.
Emissions inventories significantly affect photochemical air quality model performance and the development of effective control strategies. However, there have been very few studies to evaluate their accuracy. Here, to evaluate a volatile organic compound (VOC) emissions inventory, we implemented a combined approach: comparing the ratios of carbon bond (CB)-IV VOC groups to nitrogen oxides (NOx) or carbon monoxide (CO) using an emission preprocessing model, comparing the ratios of VOC source contributions from a source apportionment technique to NOx or CO, and comparing ratios of CB-IV VOC groups to NOx or CO and the absolute concentrations of CB-IV VOC groups using an air quality model, with the corresponding ratios and concentrations observed at three sites (Maryland, Washington, DC, and New Jersey). The comparisons of the ethene/NOx ratio, the xylene group (XYL)/NOx ratio, and ethene and XYL concentrations between estimates and measurements showed some differences, depending on the comparison approach, at the Maryland and Washington, DC sites. On the other hand, consistent results at the New Jersey site were observed, implying a possible overestimation of vehicle exhaust. However, in the case of the toluene group (TOL), which is emitted mainly from surface coating and printing sources in the solvent utilization category, the ratios of TOL/ NOx or CO, as well as the absolute concentrations revealed an overestimate of these solvent sources by a factor of 1.5 to 3 at all three sites. In addition, the overestimate of these solvent sources agreed with the comparisons of surface coating and printing source contributions relative to NOx from a source apportionment technique to the corresponding value of estimates at the Maryland site. Other studies have also suggested an overestimate of solvent sources, implying a possibility of inaccurate emission factors in estimating VOC emissions from surface coating and printing sources. We tested the impact of these overestimates with a chemical transport model and found little change in ozone but substantial changes in calculated secondary organic aerosol concentrations.  相似文献   

17.
The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25%) relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

18.
The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

19.
Volatile organic compounds (VOCs) emitted from surface coatings have caused growing public concern for air quality. Even the low-emitted VOC impact from water-based paints on indoor air quality in urban areas has caused concern. This paper presents experimental data using a mathematical model to simulate dynamic VOC emissions from water-based paints that is based on mass transfer and molecular diffusion theories. A series of field-analogous experiments were carried out to continuously measure the VOCs emitted from two typical water-based paints using a gas chromatography-flame-ionization detector monitor in an artificial wind tunnel system. In the study cases, the mass flux of VOCs emitted from the water-based paints was up to 50 microg/m2sec. It was found that the time needed to completely emit VOCs from water-based paints is just hundreds of seconds. However, the order of magnitude of the VOC emission rate from water-based paints is not lower than that from some dry building materials and solvent-based paints. The experimental data were used to produce a useful semiempirical correlation to estimate the VOC emission rates for water-based paints. This correlation is valid under appropriate conditions as suggested by this work with a statistical deviation of +/- 7.6%. With this correlation, it seems feasible to predict the dynamic emission rates for VOCs during a painting process. This correlation is applicable for assessing the hazardous air pollutant impact on indoor air quality or for environmental risk assessment. Associated with the dynamic VOC emission characterization, the air-exchange rate effect on the VOC emission rates is also discussed.  相似文献   

20.
Zou SC  Lee SC  Chan CY  Ho KF  Wang XM  Chan LY  Zhang ZX 《Chemosphere》2003,51(9):1015-1022
Ambient air monitoring was conducted at Datianshan landfill, Guangzhou, South China in 1998 to investigate the seasonal and horizontal variations of trace volatile organic compounds (VOCs). Twelve sampling points over the Datianshan landfill were selected and samples were collected simultaneously using Carbontrap(TM) adsorption tubes. Thirty eight VOCs were detected in the winter, whereas 60 were detected in the summer. The VOC levels measured in summer were alkanes, 0.5-6.5 microg/m(3); aromatics, 2.3-1667 microg/m(3); chlorinated species, 0.2-31 microg/m(3); terpines, 0.1-34 microg/m(3); carbonyl species, 0.3-5.6 microg/m(3) and naphthalene and its derivatives, 0.4-27 microg/m(3). Compared to the summer samples the VOC levels in winter were much lower (mostly 1-2 orders of magnitude lower). The aromatics are dominant VOCs in landfill air both in winter and summer. High levels of alkylbenzene and terpines such as methyl-isopropylbenzene (max 1667 microg/m(3)) and limonene (max 162 microg/m(3)) cause undesirable odor. The similar correlation coefficients of BTEX in summer and winter suggest VOCs emissions were from landfill site sources. The variation of BTEX ratio at landfill site is different from that in the urban area of Guangzhou. It shows that the ambient VOCs at landfill site were different from the urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号