共查询到20条相似文献,搜索用时 0 毫秒
1.
Ntiamoah Evans Brako Li Dongmei Appiah-Otoo Isaac Twumasi Martinson Ankrah Yeboah Edmond Nyamah 《Environmental science and pollution research international》2022,29(48):72777-72796
Environmental Science and Pollution Research - The Ghanaian economy relies heavily on maize and soybean production. The entire maize and soybean production system is low-tech, making it extremely... 相似文献
2.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections. 相似文献
3.
Xiao Pengying Ai Shuo Zhou Jing Luo Xiaojing Kang Baowen Feng Li Zhao Tiantao 《Environmental science and pollution research international》2020,27(30):37188-37198
Environmental Science and Pollution Research - Production of the greenhouse gas nitrous oxide (N2O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing... 相似文献
4.
Kim DS Harazono Y Baten MA Nagai H Tsuruta H 《Journal of the Air & Waste Management Association (1995)》2002,52(4):416-422
The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4 microg CO2/m2/sec (average of 49.1 +/- 42.7 microg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 +/- 35.6 ng N2O/m2/ sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 microg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 microg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces. 相似文献
5.
Yongqiang Zhao Yongqiu Xia Bolun Li Xiaoyuan Yan 《Environmental science and pollution research international》2014,21(16):9973-9982
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N2O emissions. However, the key factors controlling this process as well as N2O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N2 and N2O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N2 and N2O production were strongly associated with the addition of NO3 ?-N and NH4 +-N. Specifically, NO3 ?-N controlled net N2 production following Michaelis–Menten kinetics. The maximum rate of net N2 production (V max) was 116.3 μmol N2-N m?2 h?1, and the apparent half-saturation concentration (k m) was 0.65 mg N L?1. N2O to N2 ratios increased from 0.18?±?0.03 to 0.68?±?0.16 with the addition of NO3 ?-N, suggesting that increasing NO3 ?-N concentrations favored the production of N2O more than N2. The addition of acetate enhanced net N2 production and N2O to N2 ratios, but the ratios decreased by about 59.5 % when acetate concentrations increased from 50 to 100 mg C L?1, suggesting that the increase of N2O to N2 ratios had more to do with the net N2 production rate rather than acetate addition in this experiment. The addition of Cl? did not affect the net N2 production rates, but significantly enhanced N2O to N2 ratios (the ratios increased from 0.02?±?0.00 to 0.10?±?0.00), demonstrating that the high salinity effect might have a significant regional effect on N2O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N2O to N2 ratios. 相似文献
6.
Effect of land-use change on CH4 and N2O emissions from freshwater marsh in Northeast China 总被引:1,自引:0,他引:1
Changsheng Jiang Yuesi Wang Qingju Hao Changchun Song 《Atmospheric environment (Oxford, England : 1994)》2009,43(21):3305-3309
The wetlands play an important role in global carbon and nitrogen storage, and they are also natural sources of greenhouse gases such as methane (CH4) and nitrous oxide (N2O). Land-use change is an important factor affecting the exchange of greenhouse gases between wetlands and the atmosphere. However, few studies have investigated the effect of land-use change on CH4 and N2O emissions from freshwater marsh in China. Therefore, a field study was carried out over a year to investigate the seasonal changes of the emissions of CH4 and N2O at three sites (Deyeuxia angustifolia marsh, dryland and rice field) in the Sanjiang Plain of Northeast China. Marsh was the source of CH4 showing a distinct temporal variation. Maximum fluxes occurred in June and the highest value was 20.69 ± 2.57 mg CH4 m?2 h?1. The seasonal change of N2O fluxes from marsh was not obvious, consisted of a series of emission pulses. The marsh acted as a N2O sink during winter, while became a N2O source in the growing season. The results showed that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets. The winter season CH4 flux was about 3.24% of the annual flux and the winter uptake of N2O accounted for 13.70% of the growing-season emission. Conversion marsh to dryland resulted in a shift from a strong CH4 source to a weak sink (from 199.12 ± 39.04 to ?1.37 ± 0.68 kg CH4 ha?1 yr?1), while increased N2O emissions somewhat (from 4.07 ± 1.72 to 4.90 ± 1.52 kg N2O ha?1 yr?1). Conversion marsh to rice field significantly decreased CH4 emission from 199.12 ± 39.04 to 94.82 ± 9.86 kg CH4 ha?1 yr?1 and N2O emission from 4.07 ± 1.72 to 2.09 ± 0.79 kg N2O ha?1 yr?1. 相似文献
7.
The mass transport model TEOTIL was used to project nitrate (NO3) fluxes from the Tovdal River basin, southernmost Norway, given four scenarios of climate change. Forests, uplands, and open water currently account for 90% of the NO3 flux. Climate scenarios for 2071-2100 suggest increased temperature by 2-4 degrees C and precipitation by 3-11%. Climate experiments and long-term monitoring were used to estimate future rates of nitrogen (N) leaching. More water will run through the terrestrial catchments during the winter but less will run in the spring. The annual NO3 flux from the Tovdal River to the adjoining Topdalsfjord is projected to remain unchanged, but with more NO3 delivered in the winter and less in the spring. Algal blooms in coastal waters can be expected to occur earlier in the year. Major sources of uncertainty are in the long-term fate of N stored in soil organic matter and the impacts of forest management. 相似文献
8.
Zhisheng Yao Xunhua Zheng Baohua Xie Chunyan Liu Baoling Mei Haibo Dong Klaus Butterbach-Bahl Jianguo Zhu 《Atmospheric environment (Oxford, England : 1994)》2009,43(11):1888-1896
Chamber techniques can easily be applied to field trials with multiple small plots measuring carbon- and nitrogen-trace gas fluxes. Nevertheless, such chamber measurements are usually made weekly and rarely more frequently than once daily. However, automatic chambers do allow flux measurements on sub-daily time scales. It has been hypothesized that sub-daily measurements provide more reliable results, as diurnal variations are captured better compared to manual measurements. To test this hypothesis we compared automatic and manual measurements of N2O, CO2 and CH4 fluxes from tilled and non-tilled plots of a rice–wheat rotation ecosystem over a non-waterlogged period. Our results suggest that both techniques, i.e., either manual or automatic chambers of N2O and CO2 emissions resulted in biased fluxes. The manual measurements were adequate to capture either day-to-day or seasonal dynamics of N2O, CO2 and CH4 exchanges, but overestimated the cumulative N2O and CO2 emissions by 18% and 31%, respectively. This was due to neglecting temperature-dependent diurnal variations of C and N trace gas fluxes. However, the automatic measurements underestimated the cumulative emissions of N2O and CO2 by 22% and 17%, respectively. This underestimation resulted from chamber effects upon soil moisture during rainfall processes. No significant difference was detected between the two methods in CH4 exchanges over the non-waterlogged soils. The bias of manual chambers may be significant when pronounced diurnal variations occur. The bias of automatic measurements can only be avoided/minimized if chamber positions are frequently changed and/or if chambers are automatically opened during rainfall events. We therefore recommend using automatic chambers together with continuous measurements of soil chamber moisture to allow for soil moisture correction of fluxes or to correct flux estimates as derived by manual chambers for possible diurnal variations. 相似文献
9.
Baig Imran Ali Chandio Abbas Ali Ozturk Ilhan Kumar Pushp Khan Zeeshan Anis Salam Md.Abdus 《Environmental science and pollution research international》2022,29(23):34209-34230
Environmental Science and Pollution Research - In recent years, environmental change has arisen as a ubiquitous problem and gained environmentalist’s attention across the globe due to its... 相似文献
10.
Wu Xueying Sadiq Muhammad Chien Fengsheng Ngo Quang-Thanh Nguyen Anh-Tuan Trinh The-Truyen 《Environmental science and pollution research international》2021,28(47):66736-66750
Environmental Science and Pollution Research - The study estimates the long-run dynamics of a cleaner environment in promoting the gross domestic product of E7 and G7 countries. The recent study... 相似文献
11.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。 相似文献
12.
13.
14.
Chunming Jiang Guirui Yu Huajun Fang Guangmin Cao Yingnian Li 《Atmospheric environment (Oxford, England : 1994)》2010,44(24):2920-2926
An increasing nitrogen deposition experiment (2 g N m?2 year?1) was initiated in an alpine meadow on the Qinghai-Tibetan Plateau in May 2007. The greenhouse gases (GHGs), including CO2, CH4 and N2O, was observed in the growing season (from May to September) of 2008 using static chamber and gas chromatography techniques. The CO2 emission and CH4 uptake rate showed a seasonal fluctuation, reaching the maximum in the middle of July. We found soil temperature and water-filled pore space (WFPS) were the dominant factors that controlled seasonal variation of CO2 and CH4 respectively and lacks of correlation between N2O fluxes and environmental variables. The temperature sensitivity (Q10) of CO2 emission and CH4 uptake were relatively higher (3.79 for CO2, 3.29 for CH4) than that of warmer region ecosystems, indicating the increase of temperature in the future will exert great impacts on CO2 emission and CH4 uptake in the alpine meadow. In the entire growing season, nitrogen deposition tended to increase N2O emission, to reduce CH4 uptake and to decrease CO2 emission, and the differences caused by nitrogen deposition were all not significant (p < 0.05). However, we still found significant difference (p < 0.05) between the control and nitrogen deposition treatment at some observation dates for CH4 rather than for CO2 and N2O, implying CH4 is most susceptible in response to increased nitrogen availability among the three greenhouse gases. In addition, we found short-term nitrogen deposition treatment had very limited impacts on net global warming potential (GWP) of the three GHGs together in term of CO2-equivalents. Overall, the research suggests that longer study periods are needed to verify the cumulative effects of increasing nitrogen deposition on GHG fluxes in the alpine meadow. 相似文献
15.
Pan Chunxing Chen Surui Chen Ziming Li Yiming Liu Yike Zhang Zejun Xu Yani Liu Guanting Yang Kaiye Liu Guangrong Du Zhiyun Zhang Lanyue 《Environmental science and pollution research international》2022,29(14):20571-20592
Environmental Science and Pollution Research - The geographical distribution of plant resources is of great significance for studying the origin, distribution, and evolution of species. Climate and... 相似文献
16.
Seasonal changes of CO(2), CH(4) and N(2)O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan 总被引:10,自引:0,他引:10
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites. 相似文献
17.
Fluctuations in the 20-year record of nitrate (NO3) and total organic carbon (TOC) concentrations and fluxes in runoff at the small headwater catchment Storgama, southern Norway, were related to climate and acid deposition. The long-term decline in NO3 related to reduced NO3 deposition and increased winter discharge, whereas the long-term increase in TOC related to reduced sulfur deposition. Multiple regression models describing long-term trends and seasonal variability in these records were used to project future concentrations given scenarios of climate change and acid deposition. All scenarios indicated reduced NO3 fluxes and increased TOC fluxes; the largest projected changes for the period 2071-2100 were -86% and +24%, respectively. Uncertainties are that the predicted future temperatures are considerably higher than the historical record. Also, nonlinear responses of ecosystem processes (nitrogen [N] mineralization) to temperature, N-enrichment of soils, and step-changes in environmental conditions may affect future leaching of carbon and N. 相似文献
18.
Drouet JL Capian N Fiorelli JL Blanfort V Capitaine M Duretz S Gabrielle B Martin R Lardy R Cellier P Soussana JF 《Environmental pollution (Barking, Essex : 1987)》2011,159(11):3156-3161
Modelling complex systems such as farms often requires quantification of a large number of input factors. Sensitivity analyses are useful to reduce the number of input factors that are required to be measured or estimated accurately. Three methods of sensitivity analysis (the Morris method, the rank regression and correlation method and the Extended Fourier Amplitude Sensitivity Test method) were compared in the case of the CERES-EGC model applied to crops of a dairy farm. The qualitative Morris method provided a screening of the input factors. The two other quantitative methods were used to investigate more thoroughly the effects of input factors on output variables. Despite differences in terms of concepts and assumptions, the three methods provided similar results. Among the 44 factors under study, N2O emissions were mainly sensitive to the fraction of N2O emitted during denitrification, the maximum rate of nitrification, the soil bulk density and the cropland area. 相似文献
19.
Deug-Soo Kim Y. Harazono M. A. Baten H. Nagai H. Tsuruta 《Journal of the Air & Waste Management Association (1995)》2013,63(4):416-422
Abstract The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4μg CO2/m2/sec (average of 49.1 ± 42.7 μg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 ± 35.6 ng N2O/m2/sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 μg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 μg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces. 相似文献
20.
Responses of CH(4), CO(2) and N(2)O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains 总被引:2,自引:0,他引:2
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. 相似文献