首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   

2.
The possibility of a long term evolution for tropospheric ozone, connected to a rise of anthropogenic releases, raises the question of a human climatic action. In order to bring an experimental confirmation to photochemical theories, continuous CO and O3 measurements were started in November at the Pic du Midi observatory (3000 m altitude in the Pyrenean range). The results obtained confirm the photochemical hypothesis about the ozone origin. An ozone maximum is found in summer, corresponding to a CO minimum, which agrees with the increase of the u.v. flux. The seasonal variation does not exceed 19% of the value integrated over the year, which limits to 20% the maximal stratospheric contribution. The standard diurnal variations show the existence of a variable lag (0–4 h) between the O3 minimum and the CO maximum, which is interpreted as showing a photochemical O3 formation in the afternoon in the air coming from the lower layers.  相似文献   

3.
The tropospheric column of ozone is analyzed from the measurements of the vertical profile of ozone by balloon-born ozonesondes. The data base includes ∼16,000 ozone profiles collected above six European stations—three of them have begun the ozonesoundings since 1970. We present a trend analysis (with data up to 2005) focusing on detection of the long-term tropospheric ozone variability over the European network. The ozone time series have been examined separately for each station and season (DJF, MAM, JJA, SON) using a flexible trend model. A trend component of the model is taken as a smooth curve without a priori defined shape. A large increase in the European tropospheric ozone since the beginning of the 1970s (net change of ∼10% in summers and ∼30% in winters) and a kind of stabilization in the early 1990s have been corroborated by the study. This pattern comes from the most extensive data set of ozonesoundings over Hohenpeissenberg and Payern. The decadal differences in the trend pattern between these and other European stations are disclosed. The results of a stepwise regression model using various characteristics of the ozone and temperature profiles as explanatory variables for the tropospheric column ozone (TCO3) variations show that the ozone changes may be reconstructed using the ozone mixing ratio at 500 hPa, the thermal tropopause (TT) height, and the difference between ozonepause and TT heights. It appears that the last two factors induce 20–30% of the net TCO3 change over Hohenpeissenberg in the 1970–2004 period.  相似文献   

4.
Relatively little prior use has been made of information theory in air quality analysis. This paper explores whether basic, but formal, quantitative measures of information content might yield fresh perspectives on seasonal variations in the ground-level ozone concentration field across the lower Fraser Valley (LFV), British Columbia, Canada. I calculate Shannon entropy in daily maximum ozone concentration on a month-by-month, station-by-station basis, using 1 year of hourly measurements from 18 air quality monitoring stations. The values are then qualitatively compared with an eye to identifying spatial and seasonal patterns. The results further demonstrate the potential utility of information theoretic concepts for assessing air quality variability; yield some new insight into tropospheric ozone dynamics across the LFV; and may provide some guidance to the refinement of monitoring network configuration. Of particular note is that, although entropy and mean concentration exhibit some similarities in their respective seasonal patterns, maximum uncertainty and information content appears to occur at times and locations somewhat different from those at which highest concentrations are experienced.  相似文献   

5.
Using the set of multivariate criteria described in a companion paper, ozone-rich layers detected in tropospheric soundings are clustered according to their stratospheric or boundary layer origin. An additional class for aged tropospheric air masses is also considered. This analysis is exclusively based on the measured physical properties of the layers. The database includes 27,000 ozone profiles collected above 11 European stations—two of which provide measurements since 1970. The seasonal cycle of the tropospheric ozone stratification exhibits a clear summer maximum. This increase is due to aged tropospheric air masses that are more frequently detected, suggesting an enhanced lifetime of layers in summer. In terms of ozone content, the relative impact of stratospheric ozone compared to the other sources is highest in winter while export from the boundary layer presents a uniform seasonal cycle. Altitude and thickness distributions of the layers are consistent with the dynamical processes involved in the layering. Northernmost and southernmost stations are more exposed to stratospheric air intrusions into the free troposphere. Long-term trends show that transport from the tropopause region has increased since the mid 1980s. This trend being concomitant with lower ozone content of such layers, a moderate trend of the transport efficiency from the stratosphere on total tropospheric ozone is observed. The increase of ozone detected in tropospheric layers since the mid 1980s cannot be attributed to any recent export process from either the stratosphere or the boundary layer but rather to enhanced photochemical production in aged air masses or to an increase in the lifetime of the layers.  相似文献   

6.
7.
To determine if stomatal conductance (g(s)) of forest trees could be predicted from measures of leaf microclimate, diurnal variability in in situ g(s) was measured in black cherry (Prunus serotina), red maple (Acer rubrum), and northern red oak (Quercus rubra). Relative to overstory trees, understory saplings exhibited little diurnal variability in g(s) and ozone uptake. Depending on species and site, up to 30% of diurnal and seasonal variation in g(s )of overstory trees was explained by photosynthetically active radiation and vapor pressure deficit. Daily maximum g(s) was significantly related to soil moisture in overstory northern red oak and black cherry (R(2) ranged from 33 to 65%). Although g(s) was not fully predicted using instantaneous measures of leaf microclimate, ozone uptake of large forest trees was reduced by low soil moisture.  相似文献   

8.
The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10–15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hohenpeissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, due to the eclipse, of about 2 ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2 h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NOx levels. Measured and modeled NO and NO2 concentrations at Hohenpeissenberg during the eclipse are also compared and indicate that the partitioning of NO and NO2 in NOx is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NOx sources.  相似文献   

9.
Ozone profiles are often used to investigate day-to-day and year-to-year variability in origins of free tropospheric ozone. With this in mind, more than 50 ozonesonde launches were conducted in Beltsville, MD, during the summers of 2004 through 2007. Budgets of free tropospheric ozone were calculated for each ozone profile in the four summers using a laminar identification (LID) method and unusual episodes were analyzed with respect to meteorological variables. The laminar method showed that stratosphere-to-troposphere transport (ST) accounted for greater than 50% of the free tropospheric ozone column on 17% of days sampled, a more pronounced influence than regional convective and lightning (RCL) sources. The ST origins were confirmed with trajectories, and tracers (water vapor and potential vorticity). The amount of free tropospheric ozone from ST and RCL sources varied from year-to-year (up to 13%) and can be explained by differences in mean meteorological patterns. On average, almost 30% of the free tropospheric column was attributed to ST influence, about twice as much as RCL, although the LID method may not capture weeks-old lightning influences as in a chemical model. The prevalence of ST ozone in summertime Beltsville soundings was similar to six sounding sites in the IONS-04 campaign [Thompson, A.M., et al., 2007b. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 1. Summertime upper tropospheric/lower stratosphere ozone over northeastern North America. J. Geophys. Res. 112, D12S12; Thompson, A.M., et al., 2007c. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res. 112, D12S13.] and to statistics from a 30 year climatology of European soundings [Collette, A., Ancellet, G., 2005. Impact of vertical transport processes on the tropospheric ozone layering above Europe. Part II: Climatological analysis of the past 30 years. Atmos. Environ. 39, 5423–5435]. The Beltsville record also demonstrated the value of soundings for air quality forecasting in an urban area. The 22 nighttime soundings collected over Beltsville in 2004–2007 can be divided into distinct polluted and unpolluted subsets, the former 20 ppbv higher in residual layer ozone (1 km) than the latter. These distinctions propagated to daytime differences of 10 ppbv at the surface in the Washington, DC, area, with the high-ozone residual layers leading to non-attainment of the National Ambient Air Quality Standard for ozone. More frequent ozone observations aloft appear essential for better understanding ozone variability and for enabling air quality modelers to achieve more accurate ozone forecasts.  相似文献   

10.
Various causes of tropospheric changes have been considered in Part I in connection with the analysis of observation data. It is clear however, that the principal instrument for understanding numerous and often interacting causes of ozone changes is numerical modelling. A review of the current status of the numerical modelling has been made for the variability of the ozone concentration in the troposphere. Observation data on tropospheric ozone and relevant numerical modelling results show that a necessity exists to get more adequate global observational data.  相似文献   

11.
Three years of measurement of PM2.5 with 5-min time resolution was conducted from 2005 to 2007 in urban and rural environments in Beijing to study the seasonal and diurnal variations in PM2.5 concentration. Pronounced seasonal variation was observed in the urban area, with the highest concentrations typically observed in the winter and the lowest concentrations generally found in the summer. In the rural area, the maximum in PM2.5 concentration usually appeared during the spring, followed by a second maximum in the summer, while the minimum generally occurred in the winter. Significant diurnal variations in PM2.5 concentration were observed in both urban and rural areas. In the urban area, the PM2.5 concentration displays a bimodal pattern, with peaks between 7:00 and 8:00 a.m. and between 7:00 and 11:00 p.m. The minimum generally appears around noon. The morning peak is attributed to enhanced anthropogenic activity during rush hours. The decreases of boundary layer height and wind speed in the afternoon companying with increased source activity during the afternoon rush hour result in the highest PM2.5 concentration during evening hours. In the rural area, the PM2.5 concentration shows a unimodal pattern with a significant peak between 5:00 and 11:00 p.m.The seasonal and diurnal variations in PM2.5 concentration in the urban area are mostly dominated by the seasonal and diurnal variability of boundary layer and source emissions. The year-to-year variability of rainfall also has an important influence on the seasonal variation of PM2.5 in the urban area. The seasonal and diurnal wind patterns are more important factors for PM2.5 variation in the rural area. Southerly winds carry pollutants emitted in southern urban areas northward and significantly enhance the PM2.5 concentration level in the rural area.  相似文献   

12.
An overview of the ozone issues is given including the following aspects: 1. The impact of tropospheric ozone on climate as a greenhouse gas (GHG), 2. Solar activity effects on TO and ozone concentration vertical profiles in both the troposphere and stratosphere (in cases of solar radiation absorption by the stratosphere, an unexpected problem arises via a coupling between processes of increased absorption due to “bursts” of solar activity and an enhanced destruction of ozone molecules due to the same increase resulting in weakening UV radiation absorption) and 3. Surface ozone concentration variations under conditions of polluted urban atmospheres which lead to episodes of photochemical smog formation (dangerous for human health).  相似文献   

13.
Ambient surface ozone was monitored for one year at a series of seven sites along an elevation gradient from 1600 m to 3500 m above sea level (ASL) in Boulder County, Colorado. Spatial variability of ozone, quantified as the root mean squared deviation of hourly ozone per kilometer horizontal separation, decreased with elevation and distance from local sources, validating the assumption that (except at the City of Boulder (BO) site) the results of the study are representative of the Colorado Front Range. The northern hemisphere (NH) tropospheric spring ozone peak was clearly apparent in late April and early May and affected ozone at all elevations. Ozone consistently increased with elevation during winter, with a mean monthly rate of 1.5 ppbv per 100 m elevation. In summer, this monotonic increase in ozone with elevation was not observed; instead mean monthly ozone increased in two steps, by ~15 ppbv between 1610 m and 1940 m ASL and by ~10 ppbv between 3350 m and 3530 m ASL to a maximum of 60 ppbv. The amplitude of the diurnal ozone cycle decreased with increasing elevation. Average summertime diurnal swings in ozone concentration had a magnitude of 29 ppbv at 1610 m ASL, and 7–16 ppbv at the mid-elevation sites. In winter a diurnal cycle was observed only at the BO site, ozone concentrations at the remaining six locations changed on a multi-day timescale, indicating regional background behavior as the primary factor for wintertime ozone. Even the highest elevation site was influenced by transported urban air pollution in summer, indicated by the average 5 ppbv diurnal increase in ozone. Ozone exposure at the mid- to high-elevation sites in many instances approached and exceeded the 8-h National Ambient Air Quality Standard of 75 ppbv. The elevated ozone levels along this transect were interpreted to be caused by the confounding effects of the high elevation of these sites, increased ozone in long-range transported air, and anthropogenic ozone production in air transported from the nearby urban and suburban areas east of the Colorado Front Range Mountains.  相似文献   

14.
An empirical orthogonal function (EOF) analysis is applied to two different data sets of tropospheric column ozone (TCO) and observed lightning flash rates over the tropical Atlantic for the period of 1996–2000. The first two dominant EOF modes of TCO values, explaining more than 65% of total variance are characterized by the seasonal cycle. The time series of EOF1 and EOF2 of TCO values are in phase with those of the EOF2 (16%) and EOF1 (63%) of the lightning, respectively. These relationships imply the influence of lightning on the tropical ozone maximum and the tropical ozone paradox. Moreover, the spatial distribution of the EOF modes and the horizontal wind field in the upper troposphere show that the highest lightning flash rates are located upstream of the region where high TCO values are found throughout the year.  相似文献   

15.
In this paper, the concept of scale analysis is applied to evaluate ozone predictions from two regional-scale air quality models. To this end, seasonal time series of observations and predictions from the RAMS3b/UAM-V and MM5/MAQSIP (SMRAQ) modeling systems for ozone were spectrally decomposed into fluctuations operating on the intra-day, diurnal, synoptic and longer-term time scales. Traditional model evaluation statistics are also presented to illustrate how the scale analysis approach can help improve our understanding of the models’ performance. The results indicate that UAM-V underestimates the total variance (energy) of the ozone time series when compared with observations, but shows a higher mean value than the observations. On the other hand, MAQSIP is able to better reproduce the average energy and mean concentration of the observations. However, both modeling systems do not capture the amount of variability present on the intra-day time scale primarily due to the grid resolution used in the models. For both modeling systems, the correlations between the predictions and observations are insignificant for the intra-day component, high for the diurnal component because of the inherent diurnal cycle but low for the amplitude of the diurnal component, and highest for the synoptic and baseline components. This better model performance on longer time scales suggests that current regional-scale models are most skillful in characterizing average patterns over extended periods, rather than in predicting concentrations at specific locations, during 1–2 day episodic events. In addition, we discuss the implications of these results to using the model-predicted daily maximum ozone concentrations in the regulatory framework in light of the uncertainties introduced by the models’ poor performance on the intra-day and diurnal time scales.  相似文献   

16.
Total Ozone Concentration (TOC) data over nineteen stations around India (fifteen stations) and its adjoining regions (three stations in Pakistan and one station in Bangladesh) are investigated in the present analysis. The overpass satellite data for these nineteen stations, distributed in the latitude range from 8.48°N to 35.83°N and altitude range from 6 m to 2718 m are available from FTP Site. TOC data pertaining to the last twelve years from 1997 to 2008 were obtained from two different instruments: Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) on Earth Probe and AURA satellites respectively. The analysis is divided into two phases, each of six years duration; from 1997 to 2002 and from 2003 to 2008. Seasonal average values of TOC are calculated for the two phases and compared to study the spatial distribution (latitude, longitude and station altitude) and the trends of TOC variation. In general a decreasing tendency in ozone concentration was found everywhere. The average yearly rate of the TOC decrease was ?0.363 DU over the entire region during the period 1997–2008. The trends in the TOC distribution and its decrease with latitude were found parabolic, with a deep near 14.7°N and 12.1°N for the two phases respectively. The decrease was maximum at lower latitude (?1.87%) and minimum (?0.25%) at higher latitude. Weak oscillatory trends in the TOC distribution and its decrease with longitude were found. A deep in the longitudinal variation was observed in each phase, at 77.4°E during 1997–2002 and at 78.2°E during 2003–2008. The minimum centre of the ozone distribution is therefore shifted from 14.7°N, 77.4°E to 12.1°N, 78.2°E over the last twelve years, and in general a meridional line near 78°E appears to divide symmetrically the TOC distribution over this region. Strong oscillatory trends in the seasonal average of TOC distribution and its decrease with station altitude are observed during the two phases. The inversion of high correlation coefficients between the seasonal average TOC and station altitude in the range 6 m to 2718 m indicate the existence of four transition layers aloft, near 200, 740, 1670, and 2400 m in the lower troposphere. Emission of precursor pollutants together with complex wind pattern around the marine boundary appears to have strong potentials to modulate tropospheric ozone and the observed spatial distribution of TOC may be expected.  相似文献   

17.
The natural background in the ozone concentration at rural locations in the United States and western Europe has been estimated by use of several approaches. The approaches utilized include the following: (1) historical trends in ozone concentration measurements, (2) recent ozone measurements at remote sites, (3) use of tracers of air originating in the stratosphere or upper troposphere and (4) results from applications of tropospheric photochemical models. While each of these approaches has its own limitations it appears that the natural background of ozone during the warmer months of the year is in the range of 10 to 20 ppb. Most of the ozone originating in the lower stratosphere or upper troposphere is lost by chemical or physical removal processes as well as undergoing dilution by air in the lower troposphere before reaching ground level rural locations. Lower tropospheric photochemical processes, those below 5 km, are likely to account for most of the ozone measured at rural locations during the warmer months of the year.

A key aspect to improved quantitation of the contributions from lower tropospheric photochemical processes to ozone concentrations continues to be more extensive atmospheric measurements of the distribution of reactive species of nitrogen. The emission densities of anthropogenic sources of NOx are known to be highly variable over populated areas of continents as well as between continental areas and the oceans. The emission densities of biogenic sources of NOx are small, likely to be highly variable, but poorly quantitated. These wide variations indicate the need for use of three dimensional tropospheric photochemical models over large continental regions.

Available results do indicate higher efficiencies for ozone formation at lower NOx concentrations, especially below 1 ppb.  相似文献   

18.
Revealing source signatures in ambient BTEX concentrations   总被引:2,自引:0,他引:2  
Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.  相似文献   

19.
A new method is proposed to classify ozone-rich layers observed in tropospheric profiles in terms of their origin using multivariate analysis. We combine principal component and discriminant analyses to quantify the respective ability of 21 measured physical parameters to describe the layers. Agglomerative hierarchical clustering shows the existence of clusters of air masses with specific physical characteristics. Quadratic discriminant analysis allows the definition of multidimensional borders between these clusters. The geophysical characteristics of the clusters are discussed and related to the origins of the layers: recently transported from the stratosphere (ST) or from the boundary layer (BL) or transported over long distances in the free troposphere.This clustering is compared to the results of a Lagrangian particle dispersion model for a 2-year period. The proportions of layers originating either from the BL or from the ST are highly consistent using both methods as well as the respective contribution of each reservoir to the total ozone mass. About 10% of the ozone measured in the tropospheric layers was exported recently from the BL and one-fifth has a recent stratospheric origin. The remaining proportion could not be attributed to any recent transport pathway. Season-dependent criteria allow very satisfactory reproduction of the seasonal variability of the layering as seen by the Lagrangian model. Analysis of the geographical origin of BL air masses suggests that the statistical clustering underestimates long-range transport, especially in fall.  相似文献   

20.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号