首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient air samples were collected at 13 air quality monitoring stations in Kaohsiung city, Kaohsiung county, and Pingtung county (KKP) to investigate the composition and spatial distribution of C2–C10 non-methane hydrocarbons (NMHCs) in southern Taiwan. Ozone formation potentials (OFPs) of NMHCs were estimated using maximum incremental reactivity (MIR) and kOH method (reactivity of NMHC with OH radical) to assess the relative effects of hydrocarbons on ozone formation. The measurements showed that mixing ratios of toluene, ethene, ethyne, ethane, isopantane and propane were the highest among all measured species at most of the sampling sites. Nevertheless, considering both the photochemical reactivities and mixing ratios of all the measured species, toluene, xylene, ethene and propene were calculated to have the highest OFPs and reactivities. The OFPs and reactivities assessed by the MIR and kOH methods for the four compounds accounted for 54.5% and 39.3% of all the measured species. Larger benefit margin of ozone abatement may be obtained by reducing emissions of a group of key species with high OFPs.2,2-dimethylbutane (22DMC4) was used as an indicator of traffic emissions to distinguish traffic from non-traffic contributions of key species in Kaohsiung metropolitan area. It revealed that the contribution of non-traffic source was significant for toluene, whereas xylene was found to be primarily from the traffic source in Kaohsiung metropolitan area during the sampling periods.  相似文献   

2.
Continuous in-situ measurements of NMHCs at Mace Head, Ireland during two full annual cycles from January 2005 to January 2007 were used to investigate NMHC emission sources and transport including dilution and photochemical oxidation. The Mace Head research station is ideally located to sample a wide range of air masses including polluted European transport, clean North Atlantic and Arctic air masses and the ultra-clean, Southern Atlantic air masses. The variety in air mass sampling is used to investigate interaction of emissions, transport, dilution and photochemistry. Variability of long-lived hydrocarbon ratios is used to assess and estimate typical transport times from emission source to the Mace Head receptor. Seasonality in the ratios of isomeric alkane pairs (for butane and pentanes) are used to assess the effects of atmospheric transport and photochemical ageing. Finally, the natural logarithms of NMHC ratios are used to assess photochemical oxidation.  相似文献   

3.
On-road vehicle emission rates of nonmethane hydrocarbons (NMHCs) were measured in two tunnels in Milwaukee, WI, in summer 2000 and winter 2001. Seasonal ambient temperatures in the Midwestern United States vary more widely than in locations where most studies of NMHC emissions from vehicle fleets have been conducted. Ethanol is the added fuel oxygenate in the area, and, thus, emissions measured here are of interest as other regions phase out methyl tertiary butyl ether and increase the use of ethanol. Total emissions of NMHCs in three types of tunnel tests averaged 4560 +/- 800 mg L(-1) fuel burned (average +/- standard error). To investigate the impact of cold start on vehicle emissions, samples were collected as vehicles exited a parking structure in subzero temperatures. NMHC emissions in the subzero cold-start test were 8830 +/- 190 mg L(-1) fuel-nearly double the tunnel emissions. Comparison of ambient data for the Milwaukee area with tunnel emissions showed the impact of seasonal differences in fuels and emissions on the urban atmosphere. Composition of fuel samples collected from area gas stations in both seasons was correlated with vehicle emissions; the predominant difference was increased winter emissions of lighter hydrocarbons present in winter gasoline. A chemical mass balance model was used to determine the contributions of whole gasoline and gasoline headspace vapors to vehicle emissions in the tunnel and cold-start tests, which were found to vary with season. Results of the mass balance model also indicate that partially combusted components of gasoline are a major contributor to emissions of aromatic compounds and air toxic compounds, including benzene, toluene, xylenes, napthalene, and 1,3-butadiene, whereas air toxics hexane and 2,2,4-trimethylpentane are largely attributed to gasoline and headspace vapors.  相似文献   

4.
As part of the Polar Sunrise Experiments (PSE) 1995, we report our results on measurement of non-methane hydrocarbons (NMHC) collected at Alert, Northwest Territories, Canada (82.5° N, 62.3° W) from Julian days 57 to 113, 1995 along with our data on continuous methane and ozone measurements during the same period. The concentration of NMHCs such as alkanes correlated well with that of methane during the dark period before polar sunrise. However, no correlation was observed after the sunrise. Several ozone depletion events and concurrent decreases in hydrocarbon concentrations relative to their background levels were observed. In all ozone depletion periods, concentration changes of alkanes and toluene were consistent with the occurrence of Cl-atom reactions. The characteristics of alkane isomer concentration changes suggest the dominance of HO chemistry prior to, and a switch to Cl chemistry after, the polar sunrise (during the ozone depletion events). The changes in ethyne concentration from their background level were in excess of those expected from Cl-atom kinetics alone and are attributed to additional Br-atom reactions. The time integral for Br mixing ratios is a few orders of magnitudes higher than that for Cl-atoms, suggesting much higher Br-atom concentrations compared to Cl-atom concentrations, if they are present simultaneously.  相似文献   

5.
Non-methane hydrocarbons (NMHCs) are known to have an important role on air quality due to their high reactivity. NMHC analysis has been performed on 148 ambient air samples collected at five different sites in the Kanto area (Tokyo metropolitan area and surrounding six prefectures) of Japan in summer and winter of 2008, and fifty NMHCs have been determined and quantified. A field measurement campaign has been conducted at one of the busiest intersections in Tokyo metropolitan area in winter of 2008. NMHC emissions are evaluated through comparison of distributions of individual NMHCs emitted from motor vehicles, which are estimated from the measurements, with those determined from the current emissions inventory. The comparison revealed that the measured distributions of acetylene, ethylene and toluene showed a good agreement with those estimated from the emissions inventory (the values estimated from the measurements are a factor of 1.5, 0.56 and 2.3 larger than the emissions inventory in median, respectively), however, propane and isobutane are found to be significantly underestimated in the emissions inventory (the measured values were a factor of 18 and 5.1 larger than the emissions inventory, respectively). The significant underestimate of propane can be explained by that the current emissions inventory does not consider emissions from liquefied propane gas (LPG) fueled vehicles. However, for isobutane, reasons for the underestimate are still unclear. Another field measurement has been conducted in summer of 2008, where the air samples have been collected at three different sites on the ground and by a helicopter as well. Remarkable high concentrations of 1-butene and cis- and trans-2-butenes have been sporadically observed in the samples collected at Urayasu in the coastal area of Tokyo bay. Calculated propylene equivalent (PE) concentrations of butenes revealed that those have a significantly important role in ozone formation when the air plume is affected by emissions from their emission sources. The PE concentrations of butenes varied from 0.1 to 39 ppbC, and accounted for 1.5–75% of total PE concentrations at Urayasu. Most of the continuous air quality monitoring stations does not record concentrations of individual hydrocarbons, therefore, the importance of reactive and low concentration hydrocarbon such as butenes might be overlooked in the current emissions inventory and/or air quality model. In this paper, the reliability of NMHC emissions is evaluated based on the field measurements. Their possible impacts on air quality in the Kanto area are discussed as well, based on the calculated propylene equivalent concentrations.  相似文献   

6.
To understand the characteristics of non-methane hydrocarbon (NMHC) abundance in an urban air of Nagoya, one of the metropolitan areas of Japan, 48 species of C2–C11 NMHCs were measured with a measurement system, developed in this study, by using gas chromatography with flame ionization detection (GC/FID) continuously for one year from December 2003 to November 2004.Annual mean concentration of NMHCs in normal and propylene equivalent (PE) in Nagoya was compared with those in four urban areas of Seoul, London, Lille, and Dallas to extract characteristics of urban air. While the absolute values of the normal and PE concentrations of alkanes, alkenes, alkyne, and aromatics were significantly different among these urban areas, the proportions of each chemical group to the total NMHC were not so different.In Nagoya, the total normal concentration was high from November to February and low from June to August. The pattern of the seasonal variation was influenced mainly by that of alkanes. On the other hand, the total PE concentration was high from July to December and low from January to June. The pattern of the seasonal variation was influenced mainly by those of alkenes and aromatics. Particularly the normal concentration of isoprene was high from May to September because of large emission associated with activity of plants. As the results, in summer, the PE concentration of isoprene was especially high, and its contribution to the total NMHCs measured in this study was approximately 40%. The total PE concentrations were high in summer when the concentration of OH radicals is also high, suggesting that the productions of ozone and secondary organic aerosol (SOA) are likely to be promoted in summer of Nagoya.  相似文献   

7.
Khwaja HA  Narang A 《Chemosphere》2008,71(11):2030-2043
Measurements of carbonyls and C2–C6 non-methane hydrocarbons (NMHCs) were made in ambient air at a rural site at the summit of Whiteface Mountain (WFM) in New York State. Alkanes dominated in the samples, with ethane and propane making up about 55% of the total on a carbon-atom basis. Ethane, the longest-lived of the NMHCs, showed a mixing ratio in the range of 0.86–2.1 ppbv. Photochemical ageing analysis indicated an anthropogenic influence on the NMHC levels. The photochemical reactivity of the hydrocarbons, calculated in terms of propylene-equivalent concentration, was dominated by alkenes (propene and ethene), which accounted for 74% of the total NMHC sum. Air mass back-trajectories have been used to investigate the origin of the observed NMHCs and carbonyls. Higher concentrations were found when air masses arrived from the midwestern US corridor. Acetone was the most abundant species, comprising from 31% to 53% of the total detected carbonyls, followed by MEK (15–53%), HCHO (7–39%), and CH3CHO (7–19%). Average concentrations were determined to be 1.61 ppbv for CH3C(O)CH3, 1.40 ppbv for MEK, 1.16 ppbv for HCHO, and 0.49 ppbv for CH3CHO. The variations in carbonyl concentrations were observed to follow patterns similar to variations in O3 concentrations, typical of secondary products. Correlations and statistical analysis of the carbonyls and NMHCs were performed, and showed that most of the compounds derived from mixing and photochemical transformation of long-range transported pollutants from the major source areas. Ranking of the carbonyls with respect to removal of the OH radical showed HCHO to be the most important species, followed by CH3CHO, MEK, and CH3C(O)CH3.  相似文献   

8.
Non-methane hydrocarbon (NMHC) source profiles consisting of 35 hydrocarbon species were measured for vehicle and petroleum refinery emissions. Refueling emissions were found to be sensitive to the grade and volatility class of fuel and to be composed mainly of saturated hydrocarbons such as n-butane and 2-methy I butane. Unsaturated and aromatic hydrocarbons, which are released from the tailpipe of vehicles as products of combustion and unburned fuel, were more prevalent in roadway emissions comprising approximately 34 percent of the total NMHCs. Cold-start emissions were nearly indistinguishable from the roadway emission profile. The only significant differences were in toluene, ethylene and acetylene, which may be related to the efficiency of combustion when the vehicle is initially started. Saturated hydrocarbon distributions of the hot-soak profiles were found to be similar to refueling emissions. The only significant difference in the profiles was in the aromatic content, which may be related to the grade of the gasoline and the effectiveness of evaporative emission control devices. The temporal variation in refinery emissions was significant and may be related to variations in refinery activities such as the production and blending of feed stocks to produce different fuels.  相似文献   

9.
Characterising sources and sinks of rural VOC in eastern France   总被引:2,自引:0,他引:2  
Fifty non-methane hydrocarbons (NMHC) and seventeen carbonyl compounds were measured at a French rural site from 1997 to 2001, as part of the EMEP programme. Data handling was based on an original source-receptor approach. First, the examination of the levels and trends was completed by the comparison of the seasonal distribution of rural and urban VOC/acetylene ambient ratios. This analysis has shown that most of the compounds derived from mixing and photochemical transformation of mid-range transported urban pollutants from the downwind urban area. Then, identified sources and sinks were temporally apportioned. Urban air masses mixing explains, at least, 80% of the wintertime levels of anthropogenic NMHC and isoprene. In summer, photochemistry dominates the day-to-day distribution of anthropogenic NMHC whilst summertime isoprene is also controlled by in-situ biogenic emissions. Then, the results of C(1)-C(3) carbonyls were discussed with respect to their direct biogenic and anthropogenic emissions and photochemical production through the [carbonyl/auto-exhaust tracers] emission ratio. Diluted vehicle exhaust emissions mainly contribute to the total content of lower aldehydes in winter while other processes control lower ketones. Secondary production is predominant in summer with at least a 50% high intensity. Its dependence upon temperature and radiation is also demonstrated. Finally, the importance of the primary and secondary biogenic production of acetone and formaldehyde is assessed. In particular, biogenic contribution would explain 37 +/- 25% of acetone levels in summer.  相似文献   

10.
The Pearl River Delta (PRD) is one of the most industrialized and urbanized regions in China. With rapid growth of the economy, it is suffering from deteriorating air quality. Non-methane hydrocarbons (NMHCs) were investigated at urban and suburban sites in Guangzhou (GZ), a rural site in PRD and a clean remote site in South China, in April 2005. Additional roadside samples in GZ and Qingxi (QX, a small industrial town in PRD), ambient air samples at the rooftop of a printing factory in QX and exhaust samples from liquefied petroleum gas (LPG)—fueled taxis in GZ were collected to help identify the source signatures of NMHCs. A large fraction of propane (47%) was found in exhaust samples from LPG-fueled taxis in GZ and extremely high levels of toluene (2.0–3.1 ppmv) were found at the rooftop of the printing factory in QX. Vehicular and industrial emissions were the main sources of NMHCs. The effect of vehicular emission on the ambient air varied among the three PRD sites. The impact of industrial emissions was widespread and they contributed greatly to the high levels of aromatic hydrocarbons, especially toluene, at the three PRD sites investigated. Leakage from vehicles fueled by LPG contributed mainly to the high levels of propane and n-butane at the urban GZ site. Ethane and ethyne from long-range transport and isoprene from local biogenic emission were the main contributors to the total hydrocarbons at the remote site. Diurnal variations of NMHCs showed that the contribution from vehicular emissions varied with traffic conditions and were more influenced by fresh emissions at the urban site and by aged air at the suburban and rural sites. Isoprene from biogenic emission contributed largely to the ozone formation potential (OFP) at the remote site. Ethene, toluene and m/p-xylene were the main contributors to the OFP at the three PRD sites.  相似文献   

11.
More than 2500 measurements of C2–C8 non-methane hydrocarbons (NMHCs) have been conducted at Finokalia sampling station on the island of Crete over a thirty-month period (September 2003–February 2006), to investigate the factors controlling NMHC levels and estimate their role in the oxidizing capacity of the Eastern Mediterranean atmosphere. Atmospheric concentrations of NMHCs range from below the detection limit (5 pptv) to a few ppbv and present a hydroxyl radical (OH) driven seasonal pattern with lower values during summer. The diel variability was also influenced by the reaction of the NMHC with the OH radical, exhibiting a nighttime maximum and a midday or early afternoon minimum. Long-lived compounds demonstrate higher concentrations under the influence of the northern sector (European continent), indicating that besides chemistry, transport significantly contributes to NMHCs levels in the area. Based on the observed NMHCs diurnal cycles, mean OH radical levels of 3.5 × 106 molecules cm−3 have been derived for May–October period.  相似文献   

12.
Twenty-one oxygenated volatile organic compounds (OVOCs) were measured in four seasonal campaigns at an urban background site in Zürich (Switzerland) with a newly developed double adsorbent sampling unit coupled to a gas chromatograph–mass spectrometer (GC–MS). In addition, selected non-methane hydrocarbons (NMHCs) were measured, as well as formaldehyde in the summer and winter campaign. The most abundant compound measured in all seasons was ethanol, with peak values of more than 60 ppb. Its seasonal variation with a lower mean value in summer compared to that in winter implied mostly anthropogenic sources. In contrast, compounds with additional biogenic sources, or compounds known to be produced in the troposphere by oxidation processes, had seasonal maxima in summer (e.g. methanol, acetone, formaldehyde, methacrolein and 2-butenone (methyl vinyl ketone, MVK)).For the OVOCs it was estimated that local sources contributed 40% and 49% to the mixing ratios of the measured compounds in summer and in winter, respectively. Combustion was estimated to contribute 75% to these local sources independent of the season. About 50% of both the OVOC and NMHC levels in Zürich could be explained by the regional background, which included regional biogenic and anthropogenic sources in addition to secondary production. Industrial sources were identified for acetone, butanone (methyl ethyl ketone, MEK), n-propanol, iso-propanol, n-butanol, ethyl acetate and butyl acetate.  相似文献   

13.
Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation of sources of NMHCs in ambient air.  相似文献   

14.
The Desert Research Institute conducted an on-road mobile source emission study at a traffic tunnel in Van Nuys, California, in August 2010 to measure fleet-averaged, fuel-based emission factors. The study also included remote sensing device (RSD) measurements by the University of Denver of 13,000 vehicles near the tunnel. The tunnel and RSD fleet-averaged emission factors were compared in blind fashion with the corresponding modeled factors calculated by ENVIRON International Corporation using U.S. Environmental Protection Agency's (EPA's) MOVES2010a (Motor Vehicle Emissions Simulator) and MOBILE6.2 mobile source emission models, and California Air Resources Board's (CARB's) EMFAC2007 (EMission FACtors) emission model. With some exceptions, the fleet-averaged tunnel, RSD, and modeled carbon monoxide (CO) and oxide of nitrogen (NOx) emission factors were in reasonable agreement (±25%). The nonmethane hydrocarbon (NMHC) emission factors (specifically the running evaporative emissions) predicted by MOVES were insensitive to ambient temperature as compared with the tunnel measurements and the MOBILE- and EMFAC-predicted emission factors, resulting in underestimation of the measured NMHC/NOx ratios at higher ambient temperatures. Although predicted NMHC/NOx ratios are in good agreement with the measured ratios during cooler sampling periods, the measured NMHC/NOx ratios are 3.1, 1.7, and 1.4 times higher than those predicted by the MOVES, MOBILE, and EMFAC models, respectively, during high-temperature periods. Although the MOVES NOx emission factors were generally higher than the measured factors, most differences were not significant considering the variations in the modeled factors using alternative vehicle operating cycles to represent the driving conditions in the tunnel. The three models predicted large differences in NOx and particle emissions and in the relative contributions of diesel and gasoline vehicles to total NOx and particulate carbon (TC) emissions in the tunnel.

Implications: Although advances have been made to mobile source emission models over the past two decades, the evidence that mobile source emissions of carbon monoxide and hydrocarbons in urban areas were underestimated by as much as a factor of 2–3 in past inventories underscores the need for on-going verification of emission inventories. Results suggest that there is an overall increase in motor vehicle NMHC emissions on hot days that is not fully accounted for by the emission models. Hot temperatures and concomitant higher ratios of NMHC emissions relative to NOx both contribute to more rapid and efficient formation of ozone. Also, the ability of EPA's MOVES model to simulate varying vehicle operating modes places increased importance on the choice of operating modes to evaluate project-level emissions.  相似文献   

15.
An investigation of high volume particle sampling and sample handling procedures was undertaken to evaluate variations of protocols being used by the U.S. Environmental Protection Agency. These protocols are used in urban ambient air studies which collect ambient and source samples for subsequent mutagenicity analysis of the organic extracts of the aerosol fraction. Specific protocol issues investigated include: (a) duration of sampling period, (b) type of filter media used to collect air particles, (c) necessity for cryogenic field site storage and dry ice shipping of filter samples, and (d) sample handling at the receiving laboratory. Six PM10 Hi-Vol samplers were collocated at an urban site in downtown Durham, North Carolina and operated simultaneously to evaluate 12 h versus 24 h collection periods and filter media choices of glass fiber, Teflon impregnated glass fiber (TIGF), and quartz fiber. Filters from the samplers plus field blanks were collected during each of 25 sampling periods. TIGF filters from two samplers were immediately placed on dry ice in the field and transported directly to cryogenic storage. TIGF, quartz, and glass fiber filters from three samplers were transported at ambient and maintained at room temperature for three to six days prior to cryogenic storage. One TIGF sample, which was collected on a previously tared filter, was subjected to controlled environment equilibration (40 percent relative humidity, 22 degrees C) for 8 to 24 h and weighed prior to cryogenic storage. All filters were subsequently stored at -70 degrees C to -80 degrees C prior to a one-time extraction and Salmonella (Ames) mutagenicity bioassay of the entire sample set.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Hudson ED  Ariya PA 《Chemosphere》2007,69(9):1474-1484
To explore processes leading to the formation of volatile organic compounds at the sea surface and their transfer to the atmosphere, whole air, marine aerosols, and surface ocean water DOC were simultaneously sampled during June-July 2004 on the Nordic seas. 19 C(2)-C(6) non-methane hydrocarbons (NMHCs) in the air samples are reported from nine sites, spanning a range of latitudes. Site-to-site variability in NMHC concentrations was high, which suggests variable, local sources for these compounds studied. Total DOC in surface waters sampled ranged from 0.84 mg l(-1) (Fram Strait) to 1.06 mg l(-1) (East Greenland Current), and decreased 6-8% with 24h UV-A irradiation. Pentanes and hexanes, as well as acetone and dimethylsulfide, were identified in the seawater samples using solid-phase microextraction/GC-MS. All these compounds are volatile enough that exchange with the atmosphere can be expected, and the detection of the hydrocarbons in particular is consistent with a marine source for these in the air samples. Size-fractionated aerosols from the same sampling regions were analysed by SEM-EDX and contained sea salt, marine sulfates, and carbonates. A culturable bacterium was isolated from the large (9.9-18 microm) fraction at one site, and identified by 16S rRNA PCR analysis as Micrococcus luteus, raising the possibility that marine bioaerosols could transfer marine organic carbon to the aerosol phase and thus influence formation of VOCs above the remote oceans.  相似文献   

17.
The chemical composition of emissions from the different anthropogenic sources of non-methane hydrocarbons (NMHC) is essential for modeling and source apportionment studies. The speciated profiles of major NMHC sources in Lebanon, including road transport, gasoline vapor, power generation, and solvent use were established. Field sampling have been carried out by canisters in 2012. Around 67 NMHC (C2 to C9) were identified and quantified by using a gas chromatograph equipped with a flame ionization detector. Typical features of the roadway emissions included high percentages of isopentane, butane, toluene, xylenes, ethylene, and ethyne. Gasoline evaporation profiles included high percentage of the C4–C5 saturated hydrocarbons reaching 59 %. The main compounds of the power generator emissions are related to combustion. Toluene and C8–C9 aromatics were the most abundant species in emissions from paint applications. Finally, the impact of the use of region-specific source profile is tackled regarding the implication on air quality.  相似文献   

18.
Liquefied petroleum gas (LPG) is currently used in a small fleet of taxis as an alternative fuel to gasoline in Taipei, Taiwan as part of an incentive program promoted by Taiwan EPA to improve urban air quality. Under the test procedure in accordance with the US FTP-75 protocol to simulate an average urban driving pattern, the exhaust from four LPG and four gasoline-powered vehicles was analyzed for the percent composition of NMHCs. Emission factors for individual NMHCs were apportioned from the emission factors of total hydrocarbon based on chemical composition of the exhaust from both types of vehicles. After adjusting for ozone formation potential (OFP) by maximum incremental reactivity, the average OFP for LPG vehicles was estimated to be only 52.8% (g-O3/veh-km) of the gasoline vehicles, or 3.3% of ozone reduction in Taipei metropolitan area, should all taxis be converted to LPG fuel.Composition analysis of the local LPG revealed that propane, butane and isobutane were the three major components and negligible amounts of alkenes were also found. In addition, the leakage from a LPG service station was substantially smaller than from a gasoline service station because of the closed design with the LPG pumping systems.  相似文献   

19.
As the host city of the 2008 Olympic games, Beijing implemented a series of air pollution control measures before and during the Olympic games. Ambient formaldehyde (HCHO) concentrations were measured using a fluorometric instrument based on a diffusion scrubber and the Hantzsch reaction; hydrocarbons were simultaneously measured using gas chromatography–mass spectrometry (GC–MS). Meteorological parameters, CO, O3, and NO2 concentrations were measured by standard commercial instrumentation. In four separate periods: (a) before the vehicle plate number control (3–19 July); (b) during the Olympic Games (8–24 August); (c) during the Paralympic Games (6–17 September) and (d) after the vehicle control was ceased (21–28 September), the average HCHO mixing ratios were 7.31 ± 2.67 ppbv, 5.54 ± 2.41 ppbv, 8.72 ± 2.48 ppbv, and 6.42 ± 2.79 ppbv, while the total non-methane hydrocarbons (NMHCs) measured were 30.41 ± 18.08 ppbv, 18.12 ± 9.38 ppbv, 30.50 ± 13.37 ppbv, and 33.33 ± 15.85 ppbv, respectively. Both HCHO and NMHC levels were the lowest during the Olympic games, and increased again during the Paralympic games even with the same vehicle control measures operative. Similar diurnal HCHO and O3 patterns indicated that photo-oxidation of NMHCs may be the major source of HCHO. The diurnal profile of total NMHCs was very similar to that of NO2 and CO: morning and evening peaks appeared in rush hours, indicating even after strict vehicle control, automobile emission may still be the dominant source of the HCHO precursors. The contributions of HCHO, alkanes, alkenes, and aromatics to OH loss rates were also calculated. HCHO contributed 22 ± 3% to the total VOCs and 24 ± 1% to the total OH loss rate. HCHO was not only important in term of abundance, but also important in chemical reactivity in the air.  相似文献   

20.

Health risks posed by ambient air pollutants to the urban Lebanese population have not been well characterized. The aim of this study is to assess cancer risk and mortality burden of non-methane hydrocarbons (NMHCs) and particulates (PM) based on two field-sampling campaigns conducted during summer and winter seasons in Beirut. Seventy NMHCs were analyzed by TD-GC-FID. PM2.5 elemental carbon (EC) components were examined using a Lab OC-EC aerosol Analyzer, and polycyclic aromatic hydrocarbons were analyzed by GC-MS. The US EPA fraction-based approach was used to assess non-cancer hazard and cancer risk for the hydrocarbon mixture, and the UK Committee on Medical Effects of Air Pollutants (COMEAP) guidelines were followed to determine the PM2.5 attributable mortality burden. The average cumulative cancer risk exceeded the US EPA acceptable level (10−6) by 40-fold in the summer and 30-fold in the winter. Benzene was found to be the highest contributor to cancer risk (39–43%), followed by 1,3-butadiene (25–29%), both originating from traffic gasoline evaporation and combustion. The EC attributable average mortality fraction was 7.8–10%, while the average attributable number of deaths (AD) and years of life lost (YLL) were found to be 257–327 and 3086–3923, respectively. Our findings provide a baseline for future air monitoring programs, and for interventions aiming at reducing cancer risk in this population.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号