首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The gas phase polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in the atmosphere of five European countries (Austria, the Czech Republic, Poland, Slovakia and Sweden) were measured simultaneously during two 21-day passive sampling campaigns using semipermeable membrane devices (SPMDs). SPMD samplers, consisting of a pair of SPMDs covered by a metal umbrella, were deployed at 40 locations ranging from remote and rural to urban and industrial, at a similar time during each of the two sampling campaigns (autumn 1999, except in Poland, winter 1999, and summer 2000). The total amounts of PAHs and nitro-PAHs found in the SPMDs ranged between 5.0–1.2×103 and 1.1×10−3–4.0 ng SPMD−1 day−1, respectively. The measured environmental sampling conditions were similar between sites and, thus, the variations in the SPMD data reflected the spatial differences in gas phase concentrations of nitro-PAHs and PAHs within and between countries. The gas phase concentrations of nitro-PAHs and PAHs found in East Europe (Slovakia, the Czech Republic and Poland 1999) were 10 times higher than those measured in Sweden, Austria and Poland in 2000. In each country, the levels of PAHs and nitro-PAHs differed by one–three orders of magnitudes amongst sampling sites. The highest within-country spatial differences were found in Poland where levels of PAHs and nitro-PAHs were about one and two orders of magnitudes, respectively, higher in winter 1999 than in summer 2000, probably due to increasing emissions of coal combustion for residential heating. Differences in PAH-patterns between sites were visualized by the multivariate projection method, principal component analysis (PCA). However, no specific source patterns were found, probably since imissions rather than emissions were measured, so the PAHs detected at many sites originated from multiple sources.  相似文献   

2.

This study involves the monitoring of organic pollutants using transplanted mussels (Mytilus galloprovincialis) as bioindicator organisms and semipermeable membrane devices (SPMDs) as passive samplers. Mussels and SPMDs were deployed to marinas, shipyards and shipbreaking yards on the coastal area of Turkey and retrieved after 60 days. Polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticide (OCP) compounds were analysed with high-resolution GC-MS. Total PAH concentrations in SPMDs and mussels ranged from 200 to 4740 ng g sampler?1 and from 7.0 to 1130 ng g?1 in wet weight (ww). PCB and OCP concentrations in SPMDs changed between 0.04–200 and 4.0–26 ng g sampler?1, respectively. The highest PCB (190 ng g?1 ww) and OCP (200 ng g?1 ww) concentrations in mussels were measured at shipyard stations. A strong correlation was observed between the PAH and PCB concentrations in SPMDs and mussels. Enzyme assays (acetylcholinesterase, ethoxyresorufin-O-deethylase, glutathione S-transferase, glutathion reductase and carboxylesterase activities) were performed as biomarkers to reveal the effects of pollution on the mussels. There was no clear relationship found between the enzyme levels and the pollutant concentrations in mussels. Integrated biomarker responses were calculated to interpret the overall effect of pollutants.

  相似文献   

3.
The polyurethane foam (PUF) disk-based passive air samplers (PAS), mounted inside two aluminium bowls to buffer the air flow to the disk and to shield it from precipitation and sunlight, were used for the collection of atmospheric SVOCs in Singapore during April 2008–June 2008. Data obtained from PAS measurements are compared to those from active high-volume air sampling (AAS). Single factor ANOVA tests show that there were no significant differences in chemical distribution profiles between actively and passively collected samples (PAHs, F = 3.38 × 10?8 < Fcritical = 4.17 with p > 0.05; OCPs, F = 2.71 × 10?8 < Fcritical = 4.75 with p > 0.05). The average air-side mass transfer coefficient (kA) for PAS, determined from the loss of depuration compounds such as 13C6 – HCB (1000 ng), 13C12 – 4,4′ DDT (1000 ng) and 13C12 – PCB 101 (1000 ng)spiked on the disks prior to deployment, was 0.12 ± 0.04 m s?1. These values are comparable to those reported previously in the literature. The average sampling rate was 3.78 ± 1.83 m3 d?1 for the 365 cm2 PUF disk. Throughout the entire sampling period (~68 d), most of the PAHs and all OCPs exhibited a linear uptake trend on PAS, while naphthalene, acenaphthylene, acenaphthene and fluorene reached the curvilinear phase after the first ~30 d exposure. Theoretically estimated times to equilibrium (teq) ranged from around one month for Acy to hundreds of years for DB(ah)A. Sampling rates, based on the time integrated active sampling-derived concentrations and masses collected by PUF disks during the linear uptake phase, were determined for all target compounds with the average values of 2.50 m3 d?1 and 3.43 m3 d?1 for PAHs and OCPs, respectively. More variations were observed as compared to those from the depuration study. These variation were most likely due to the difference of physicochemical properties of individual species. Lastly, multiple linear regression models were developed to estimate the log-transformed gaseous concentration of an individual compound in air based on the mass collection rate of the gaseous SVOCs measured using the PAS and the molecular weight (MW) of the particular compound for both PAHs and OCPs, respectively.  相似文献   

4.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

5.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

6.
Gaseous emissions of combusted electronic scrap, PVC, carpet and wood were monitored for polycyclic aromatic hydrocarbons (PAHs) by simultaneous use of semipermeable membrane devices (SPMDs) and shoots of spruce needles (Picea abies). It was found that phenanthrene, acenaphthylene and fluorene were the dominating PAHs in all samples. SPMDs and needles mainly sequestered PAH associated with the vapor phase. Particle-bound PAHs were only detected in small amounts, at which the needles tended to uptake more of these compounds in comparison to the SPMDs. Nevertheless, the logarithm of the concentrations of PAHs analyzed in both passive samplers after the same sampling period exhibited a significant linear correlation with correlation coefficients larger than 0.8073. SPMDs and spruce needles can complement each other in passive air sampling for compounds with a preference to the gas phase rather than aerosols.  相似文献   

7.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

8.
To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07 m3 g?1 d?1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n = 3) of anthracene and p,p′-DDE at 0.96 and 1.57 m3 g?1 d?1 with relative standard deviations of 8.4% and 8.6% respectively.  相似文献   

9.
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel).The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m?2 d?1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m?2 d?1, respectively.Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.9–1.4 mg N m?2 d?1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3?, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (~15%) to the total N-budget.Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m?2 d?1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 2–2.5-times higher than in other campaigns.  相似文献   

10.
A simulated burning experiment was conducted in a tubular furnace system to examine the emission of polycyclic aromatic hydrocarbons (PAHs) from the burning of rice and bean straw, and the influence of combustion parameters was investigated. Total emission amounts of 16 PAHs (∑PAHs) from the burning of rice and bean straw ranged from 9.29 to 23.6 μg g?1 and from 3.13 to 49.9 μg g?1, respectively, which increased with the increase of temperatures from 200 to 700 °C. The contribution of combustion to individual PAH yields was about 80.6–100%, which was generally increased with the increase of burning temperature. Moisture content in straw had a negative effect on PAH formation, especially on PAHs with low molecular weight. ∑PAHs emission amounts decreased by 78.2% for bean straw with a moisture content of 30% in comparison with that for dried straw. In addition, PAH emission amounts increased with the increase of O2 content in supplied air and then decreased, which showed a maximum emission at O2 content of 40%. The source fingerprint of PAHs in emission from straw burning was established, which showed that naphthalene accounted for 35.0 ± 7.4% of ∑PAHs. Based on the experimental data, emission amounts of ∑PAHs from the burning of rice and bean straw were estimated to be 320–357 and 32.5–76.0 tons to ambient air per year in China, respectively.  相似文献   

11.

This work aimed to determine the seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in airborne PM10 at two background sites (Masná—MS, Líšeň—LN) in Brno over a 5-year period (2009–2013). Samples were collected on quartz filters using a low-volume sampler by continual filtration. Concentrations of PAHs in collected PM10 samples were determined using a gas chromatography with a mass spectrometer as a detector. A different number of PAHs were determined to be at each site, i.e., 11 PAHs at the MS site and six PAHs at the LN site, and similarities between them were identified using non-parametric analysis of variance. Potential sources were identified using principal component analysis (PCA) and PAHs diagnostic ratios. The work also focused on health risk assessment. This was estimated using toxic equivalent factors to calculate individual lifetime cancer risk, which quantifies risk of exposure to PAHs for specific age groups. The average 11-PAH concentrations in M|S site annually ranged from 19.28 ± 19.02 ng m−3 (2011) to 40.37 ± 21.35 ng m−3 (2013). With regard to the LN site, the average six-PAH concentrations annually ranged from 3.64 ± 3.87 ng m−3 (2009) and 5.27 ± 6.19 ng m−3 (2012). PCA and diagnostic ratios indicate the main sources to be traffic emissions and coal combustion. Health risk assessment showed carcinogenic risk under limit value in all cases.

  相似文献   

12.
The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO2, CH4 and N2O) emission into the atmosphere during one year of observation.A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn–Winter, Springtime and Summer, monitoring at least 60% of each period (20% at the beginning, in the middle and at the end) of each cycle).During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 μm [Emission Inventory Guidebook, 2007. B1100 Particle Emissions from Animal Husbandry Activities. Available from: <http://reports.eea.europa.eu/EMEPCORINAIR5/en/B1100vs1.pdf> (accessed October 2008)] and to define GHG emission.The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5%.PM10 concentration was monitored by a sampler (Haz Dust EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data.PM10 concentration amount incoming from inlets was removed from PM10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere.Mean yearly emission factor of PM10 was measured in 2 g d?1 LU?1 for the weaning room, 0.09 g d?1 LU?1 for the farrowing room, 2.59 g d?1 LU?1 for the fattening room and 1.23 g d?1 LU?1 for the gestation room. The highest PM10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room.CO2, CH4 and N2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 min, for the 60% of the cycles.Yearly emission factor for CO2 was measured in 5997 g d?1 LU?1 for the weaning room, 1278 g d?1 LU?1 for the farrowing room, 13,636 g d?1 LU?1 for the fattening room and 8851 g d?1 LU?1 for the gestation room.Yearly emission factor for CH4 was measured in 24.57 g d?1 LU?1 for the weaning room, 4.68 g d?1 LU?1 for the farrowing room, 189.82 g d?1 LU?1 for the fattening room and 132.12 g d?1 LU?1 for the gestation room.Yearly emission factor for N2O was measured in 3.62 g d?1 LU?1 for the weaning room, 0.66 g d?1 LU?1 for the farrowing room, 3.26 g d?1 LU?1 for the fattening room and 2.72 g d?1 LU?1 for the gestation room.  相似文献   

13.
The status of the current knowledge concerning the dry deposition of atmospheric mercury, including elemental gaseous mercury (Hg0), reactive gaseous mercury (RGM), and particulate mercury (Hgp), is reviewed. The air–surface exchange of Hg0 is commonly bi-directional, with daytime emission and nighttime deposition over non-vegetated surfaces and vegetated surfaces with small leaf area indices under low ambient Hg0 conditions. However, daytime deposition has also been observed, especially when the ambient Hg0 is high. Typical dry deposition velocities (Vd) for Hg0 are in the range of 0.1–0.4 cm s?1 over vegetated surfaces and wetlands, but substantially smaller over non-vegetated surfaces and soils below canopies. Meteorological, biological, and soil conditions, as well as the ambient Hg0 concentrations all play important roles in the diurnal and seasonal variations of Hg0 air–surface exchange processes. Measurements of RGM deposition are limited and are known to have large uncertainties. Nevertheless, all of the measurements suggest that RGM can deposit very quickly onto any type of surface, with its Vd ranging from 0.5 to 6 cm s?1. The very limited data for Hgp suggest that its Vd values are in the range of 0.02–2 cm s?1.A resistance approach is commonly used in mercury transport models to estimate Vd for RGM and Hgp; however, there is a wide range of complexities in the dry deposition scheme of Hg0. Although resistance-approach based dry deposition schemes seem to be able to produce the typical Vd values for RGM and Hg0 over different surface types, more sophisticated air–surface exchange models have been developed to handle the bi-directional exchange processes. Both existing and newly developed dry deposition schemes need further evaluation using field measurements and intercomparisons within different modelling frameworks.  相似文献   

14.
Dry and wet depositions were sampled daily in Tsukuba, Japan, in spring 2007. Temporal variations in the dry and wet deposition fluxes of dust and water-soluble chemical species were controlled largely by air mass origin, the water vapor mixing ratio, and Asian dust events. The contribution of local sources to dry deposition of dust was large when the wind speed was high. Dry deposition fluxes of water-soluble chemical species were larger in humid air masses than in dry air masses. Wet deposition fluxes of dust and water-soluble chemical species indicated that air masses that passed over dust source regions and industrial regions became mixed with the maritime air masses over the coastal site of the Asian continent and western part of the Japanese islands. The total deposition of dust was 4220 mg m?2 month?1, and that of water-soluble chemical species ranged from 10 to 636 mg m?2 month?1. Wet deposition fluxes of the total deposition flux of dust accounted for 72% and those of water-soluble chemical species was for 72–96%. In particular, the largest wet deposition occurred during a single Asian dust event on 3 April. This event accounted for 23% (950 mg m?2 month?1) of the monthly dust deposition flux and for 2–28% (0.43–51 mg m?2 month?1) of the monthly deposition flux of water-soluble chemical species. This result implies that the wet deposition flux associated with even one sporadic Asian dust event can have extensive impacts on both terrestrial and oceanic ecosystems in East Asia.  相似文献   

15.
Fang M  Choi SD  Baek SY  Park H  Chang YS 《Chemosphere》2011,84(7):894-899
An IRA-743 resin bulk sampler was validated to monitor long-term bulk deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Six consecutive sampling campaigns (2008-2009) were conducted at four sites around steel complexes in Pohang, South Korea to investigate spatial and seasonal variations of PCDD/F bulk deposition. The bulk deposition within the steel complex showed the highest ∑4-8PCDD/F (Tetra-Octa) fluxes, ranging from 204 to 608 (mean: 352) pg m−2 d−1, indicating steel complexes were major sources of PCDD/Fs. The homologue profiles were dominated with lower chlorinated PCDFs. Furthermore, the prevailing winds were confirmed to influence the spatial distribution of PCDD/F deposition. There were apparent seasonal variations of the bulk deposition at each site, and seasonal homologue patterns of PCDD/Fs were clearly observed. According to the passive air sampling, however, no significant seasonal change of ambient air concentrations of PCDD/Fs was observed. Therefore, it was concluded that the seasonal variations of deposition fluxes of PCDD/Fs probably resulted from temperature-dependent gas/particle partitioning.  相似文献   

16.
Real-world vehicle emission factors for seventeen gas and particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in the Shing Mun Tunnel, Hong Kong during summer and winter 2003. Naphthalene, acenaphthylene, and acenaphthene were the most abundant gas PAHs while fluoranthene and pyrene were the most abundant in the particle phase. Most (98%) of the gas PAHs consisted of two- and three-aromatic rings whereas most of the particle-phase PAHs were in four- (~60%) and five-ring (~17%) for fresh exhaust emissions. Average emission factors for the gas- and particle PAHs were 950–2564 μg veh?1 km?1 and 22–354 μg veh?1 km?1, respectively. Good correlations were found between diesel markers (fluoranthene and pyrene; 0.85) and gasoline markers (benzo[ghi]perylene and indeno[1,2,3-cd]pyrene; 0.96). Higher PAH emission factors were associated with a higher fraction of diesel-fueled vehicles (DV) passing through the tunnel. Separate emission factors were determined from diesel and non-diesel exhaust by the regression intercept method. The average PAH emission factor (i.e., sum of gas and particle phases) from DV (3085 ± 1058 μg veh?1 km?1) was ~5 times higher than that from non-diesel-fueled vehicles (NDV, 566 ± 428 μg veh?1 km?1). Ratios of DV to NDV emission factors were high for diesel markers (>24); and low for gasoline markers (<0.4).  相似文献   

17.

As an ubiquitous carcinogen, polycyclic aromatic hydrocarbons (PAHs) are closely related to anthropogenic activities. The process of urbanization leads to the spatial interlacing of farmlands and urbanized zones. However, field evidence on the influence of urbanization on the accumulation of PAHs in crops of peri-urban farmlands is lacking. This study comparatively investigated the urbanization-driven levels, compositions, and sources of PAHs in 120 paired plant and soil samples collected from the Yangtze River Delta in China and their species-specific human intake risks. The concentrations of PAHs in crops and soils in the peri-urban areas were 2407.92 ng g?1 and 546.64 ng g?1, respectively, which are significantly higher than those in the rural areas. The PAHs in the root were highly relevant to those in the soils (R2?=?0.63, p?<?0.01), and the root bioconcentration factors were higher than 1.0, implying the contributions of root uptake to plant accumulations. However, the translocation factors in the peri-urban areas (1.57?±?0.33) were higher than those in the rural areas (1.19?±?0.14), indicating the enhanced influence through gaseous absorption. For the congeners, the 2- to 3-ring PAHs showed a higher plant accumulation potential than the 4- to 6-ring PAHs. Principal component analysis show that the PAHs in the peri-urban plants predominantly resulted from urbanization parameters, such as coal combustion, vehicle emissions, and biomass burning. The mean values of estimated dietary intake of PAHs from the consumption of peri-urban and rural crops were 9116 ng day?1 and 6601.83 ng day?1, respectively. The intake risks of different crops followed the order rice?>?cabbage?>?carrot?>?pea. Given the significant input of PAHs from urban to farmland, the influence of many anthropogenic pollutants arising from rapid urbanization should be considered when assessing the agricultural food safety.

Graphical abstract
  相似文献   

18.
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM2.5 and PM10) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM2.5 and PM10 fractions were collected using a dichotomous sampler (10 L min?1, 24 h) with Teflon? filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM2.5 in 2009) was 0.99 ng m?3 (NHV) and 3.3 ng m?3 (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m?3 and 0.12 ng m?3 for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaPeq), where the overall toxicity of a PAH mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaPeq median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m?3 and 1.2–1.4 ng m?3 for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m?3, related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern.  相似文献   

19.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号