首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has been conducted in the frame of BUMA (Prioritization of Building Materials Emissions as indoor pollution sources), a European funded project, aiming at assessing the exposure to emitted compounds in indoor air. Field campaigns in five (5) European cities (Milan, Copenhagen, Dublin, Athens and Nicosia) were carried out. These campaigns covered weekly winter and summer concentration measurements in two (2) public buildings and two (2) private houses in each city. BTEX, terpenes, and carbonyls were measured using passive sampling in two sites inside the building and one outside. VOC emission measurements on selected building material have also been performed using Field and Laboratory Emission Cell (FLEC). The results on indoor concentrations for compounds such as formaldehyde (1.2–62.6 μg m?3), acetaldehyde (0.7–41.6 μg m?3), toluene (0.9–163.5 μg m?3), xylenes (0.2–177.5 μg m?3) and acetone (2.8–308.8 μg m?3) have shown diversity and relatively significant indoor sources depending on the building type, age etc. Indoor concentrations of these substances are varied depending on the building age and type. The percentage of approximately 40% of the indoor air quality levels originated from building materials.  相似文献   

2.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

3.
The fuel matrix used in Brazil is unique around the world. The intensive use of hydrated ethanol, gasohol (gasoline with 25% v/v of ethanol), compressed natural gas (CNG), and biodiesel leads to a peculiar composition of the urban atmosphere. From 1998 to 2002 an increase in formaldehyde levels was observed and since then, a reduction. This work presents a monitoring campaign that was executed from March 2004 to February 2009 by sampling at early morning on every sunny Wednesday for a total of 183 samples. The results indicate a strong reduction in formaldehyde levels from 2004 (average of 135.8 μg m?3 with SD 28.4 μg m?3) to 2009 (average of 49.3 μg m?3 with SD 27.4 μg m?3). The levels of acetaldehyde showed a slight reduction from 2004 (average of 34.9 μg m?3 with SD 8.0 μg m?3) to 2009 (average of 26.8 μg m?3 with SD 11.5 μg m?3). Comparing the results with the concurrent evolution of the fleet and of fuel composition indicates that the observed formaldehyde levels could be associated with the increase in ethanol use and in CNG use by engines with improved technology over the first converted CNG engines. Modelling studies using the OZIPR trajectory model and the SAPRC chemical mechanism indicate that formaldehyde is the main ozone precursor in Rio de Janeiro and acetaldehyde is the forth one.  相似文献   

4.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

5.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

6.
Regional estimates of fluxes of volatile organic compounds (VOCs) are required to improve our understanding of their role in the chemistry of the atmosphere. Flux measurements on such a scale can best be obtained using aircraft-based systems. These systems usually rely on the eddy covariance technique, which requires fast response gas sensors for flux measurement, but such sensors are not available for most organic compounds, therefore, the relaxed eddy-accumulation (REA) technique was selected. An aircraft-based REA sampling system was developed and used to measure isoprene emission over the boreal forest during the 1996 summer. Over a short period in July at the Boreal Ecosystem/Atmosphere Study (BOREAS) southern study area (SSA), the isoprene fluxes ranged from −0.06 to 1.79 μg m-2 s-1, with a mean of 0.59±0.34 μg m-2 s-1, while in August at the BOREAS northern study area (NSA) the isoprene fluxes ranged from 0.00 to 0.26 μg m-2 s-1, with a mean of 0.14±0.09 μg m-2 s-1. In the SSA, the isoprene fluxes over aspen ranged from 0.44 to 1.79 μg m-2 s-1, with a mean of 0.92±0.33 μg m-2 s-1, whereas over black spruce, isoprene fluxes ranged from −0.06 to 0.54 μg m-2 s-1, with a mean of 0.36±0.21 μg m-2 s-1. The isoprene fluxes were exponentially correlated with solar radiation and radiative surface temperature. High correlations between isoprene fluxes and the fluxes of CO2 and latent heat were also observed. Carbon lost through isoprene emissions was about 0.7 and 0.8% of the CO2 assimilation rate for aspen and black spruce, respectively. The results demonstrate that the aircraft-based relaxed eddy-accumulation technique is a promising approach for quantifying the atmosphere–surface exchange of VOCs on a regional scale.  相似文献   

7.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

8.
A 3-year research project was established in 1999 to create numerical reference data for material emissions during the time of construction and during the first year. Seven buildings, representing the present construction practice in Finland, were investigated. Material emissions were measured by using the field and laboratory cell (FLEC) during the time of construction, in the newly finished, and in the 6- and 12-month-old buildings. The emission rates for volatile organic compounds (VOCs), formaldehyde, and ammonia were determined.The highest total VOCs (TVOC) emissions were measured in the newly finished buildings from the ceiling structure and from some of the PVC floor coverings. These emissions were up to 1300–2000 μg m−2 h−1. Individual VOCs with emission rates above 50 μg m−2 h−1 included 2-(2-butoxyethoxy) ethanol and its acetate, C4–C16-substituted alkylbenzenes, and xylenes. The mean TVOC emission decreased at least to the Finnish M1-class level (200 μg m−2 h−1) from all surfaces and in all the buildings in 6–12 months. The ammonia and formaldehyde emissions from the ceiling structure were 20–60 μg m−2 h−1 in the newly finished buildings and the M1-levels (30/50 μg m−2 h−1) were exceeded in some cases. These emissions even increased in some buildings during the follow-up period indicating the difference between emissions measured in the laboratory and on site from real structures. Reference values based on the means and 95th percentile are presented to be utilised in both quality control and while investigating indoor air quality problems which are suspected to be caused by a defect structure.  相似文献   

9.
A major issue in air pollution epidemiology is whether the associations that are found in the statistical analyses on the health effects of air pollution reflect real causal associations of single components or mixtures thereof, or just reflect statistical associations that are mainly the result of the high correlation between the separate components, one of them being the true causal factor.In a previous analysis on the relationship between daily SO2 levels and daily mortality in The Netherlands [Buringh, E., Fischer, P., Hoek, G., 2000. Is SO2 a causative factor for the PM-associated mortality risks in The Netherlands? Inhal. Toxicol. 12 (Suppl. 1), 55–60.], it was shown that the statistical significant association between daily variation in SO2 and daily mortality did not reflect a causal relation. Black Smoke levels in The Netherlands have decreased 4-fold during the 34 years in the period 1972–2006 (annual average from 27 μg m?3 to 6 μg m?3). This large decrease in concentrations enabled us to use the same approach for this component as was done earlier for SO2 to assess whether a decreasing trend in Black Smoke levels in The Netherlands is associated with an increasing trend in mortality relative risks or not.We used daily averaged Black Smoke (BS) data from 1972 to 2006. In the first two decades (1970–1990) only sparse data were available. Based on the availability of the data, we selected data from 1972 to 1974 and from 1982 to 1984 because during these two periods continuous daily measurement series were available. For the later years (1989–2006) data covering the whole of The Netherlands were available, giving a total of 24 years of daily data. Data on daily total mortality counts (excluding external causes), cardiovascular mortality and respiratory mortality for the whole population of The Netherlands were analyzed with regard to daily Black Smoke levels using generalized additive Poisson regression models (GAM). Period specific relative risk estimates were compared and differences in estimates between periods were evaluated.We found no consistent increase in relative risks for daily total and cause-specific mortality over time, despite the decreasing trend in the Black Smoke levels in The Netherlands. Average relative risks for total mortality varied over the different periods from 0.997 per 10 μg m?3 daily Black Smoke to 1.010 per 10 μg m?3. Average relative risks for cardiovascular mortality varied from 0.988 per 10 μg m?3 to 1.010 per 10 μg m?3 and for respiratory mortality from 1.000 to 1.010 per 10 μg m?3. For weekly averaged concentrations the average relative risks for total mortality varied over the different periods from 1.004 per 10 μg m?3 Black Smoke to 1.018 per 10 μg m?3. Average relative risks for cardiovascular mortality varied from 1.003 per 10 μg m?3 to 1.016 per 10 μg m?3 and for respiratory mortality from 1.000 to 1.050 per 10 μg m?3.The result of our analyses suggests that Black Smoke cannot be excluded as a potential causal agent because relative risks over time show no increasing trend despite the decreasing trend in Black Smoke concentrations.  相似文献   

10.
It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296–535 μg cig−1), toluene (541–1003 μg cig−1), styrene (90–162 μg cig−1), 2-dimethyl furan (71–244 μg cig−1), naphthalene (15–18 μg cig−1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests.  相似文献   

11.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

12.
We use a global 3-D atmospheric chemistry model (GEOS-Chem) to simulate surface and aircraft measurements of organic carbon (OC) aerosol over eastern North America during summer 2004 (ICARTT aircraft campaign), with the goal of evaluating the potential importance of a new secondary organic aerosol (SOA) formation pathway via irreversible uptake of dicarbonyl gases (glyoxal and methylglyoxal) by aqueous particles. Both dicarbonyls are predominantly produced in the atmosphere by isoprene, with minor contributions from other biogenic and anthropogenic precursors. Dicarbonyl SOA formation is represented by a reactive uptake coefficient γ = 2.9 × 10?3 and takes place mainly in clouds. Surface measurements of OC aerosol at the IMPROVE network in the eastern U.S. average 2.2 ± 0.7 μg C m?3 for July–August 2004 with little regional structure. The corresponding model concentration is 2.8 ± 0.8 μg C m?3, also with little regional structure due to compensating spatial patterns of biogenic, anthropogenic, and fire contributions. Aircraft measurements of water-soluble organic carbon (WSOC) aerosol average 2.2 ± 1.2 μg C m?3 in the boundary layer (<2 km) and 0.9 ± 0.8 μg C m?3 in the free troposphere (2–6 km), consistent with the model (2.0 ± 1.2 μg C m?3 in the boundary layer and 1.1 ± 1.0 μg C m?3 in the free troposphere). Source attribution for the WSOC aerosol in the model boundary layer is 27% anthropogenic, 18% fire, 28% semi-volatile SOA, and 27% dicarbonyl SOA. In the free troposphere it is 13% anthropogenic, 37% fire, 23% semi-volatile SOA, and 27% dicarbonyl SOA. Inclusion of dicarbonyl SOA doubles the SOA contribution to WSOC aerosol at all altitudes. Observed and simulated correlations of WSOC aerosol with other chemical variables measured aboard the aircraft suggest a major SOA source in the free troposphere compatible with the dicarbonyl mechanism.  相似文献   

13.
Atmospheric deposition of Hg and selected trace elements was reconstructed over the past 150 years using sediment cores collected from nine remote, high-elevation lakes in Rocky Mountain National Park in Colorado and Glacier National Park in Montana. Cores were age dated by 210Pb, and sedimentation rates were determined using the constant rate of supply model. Hg concentrations in most of the cores began to increase around 1900, reaching a peak sometime after 1980. Other trace elements, particularly Pb and Cd, showed similar post-industrial increases in lake sediments, confirming that anthropogenic contaminants are reaching remote areas of the Rocky Mountains via atmospheric transport and deposition. Preindustrial (pre-1875) Hg fluxes in the sediment ranged from 5.7 to 42 μg m?2 yr?1 and modern (post-1985) fluxes ranged from 17.7 to 141 μg m?2 yr?1. The average ratio of modern to preindustrial fluxes was 3.2, which is similar to remote lakes elsewhere in North America. Estimates of net atmospheric deposition based on the cores were 3.1 μg m?2 yr?1 for preindustrial and 11.7 μg m?2 yr?1 for modern times. Current-day measurements of wet deposition range from 5.0 to 8.6 μg m?2 yr?1, which are lower than the modern sediment-based estimate of 11.7 μg m?2 yr?1, perhaps owing to inputs of dry-deposited Hg to the lakes.  相似文献   

14.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

15.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

16.
The present study reports findings on TSP loading in the ambient air of two major cities in Pakistan – Karachi and Islamabad. Data for TSP were collected at one site in Karachi and two in Islamabad between 10 December 1998 and 08 January 1999. This article reports one of the highest TSP loadings recorded so far in any megacity of the world. During the study period, average daily TSP concentrations at the Karachi site ranged from 627 to 938 μg m−3 with a mean of 668 μg m−3. On four occasions TSP concentrations were >1000 μg m−3 (range 1031–1736 μg m−3). At the Islamabad sampling site in close proximity to the city's industrial sector, daily TSP concentrations varied in the range of 428–998 μg m−3 (mean 691 μg m−3). Even at a relatively remote site of the city (Saidpur), TSP loading was high (range 145–448 μg m−3; mean 275 μg m−3). By virtue of the WHO definition, the 24-h average TSP concentrations in a busy commercial site in Karachi and in the vicinity of an industrial sector in Islamabad were in “exceedance” by a factor of 4–8. At Saidpur, the remote site, the 24-h average TSP loading exceeded the WHO guideline of 120 μg m−3 by a factor of 1.2–3.7.  相似文献   

17.
Natural mineral dust storms (DS) from the Arabo-African region blow over the Mediterranean, reach Israel, and add to the anthropogenic particulate pollution. The effects of mineral dust on air quality in Israel were investigated using only PM10 and PM2.5 automatic measurements. The method does not require any other inputs such as satellite observations, model back-trajectories, dust forecast models, or mineralogical analyses. The method employs an automatic algorithm with three thresholds: the half-hour PM10 average must be above 100, this level is maintained for at least 3 h, and the maximum concentration recorded is above 180 μg m?3. The algorithm was designed for Israel, but can be adapted for other locations.The contribution of DS caused PM10 values to exceed the Israeli annual standard of 60 μg m?3 year?1 in 6 of the 12 years examined. The DS contribution to PM10 annual average ranged from 9.4% to 29.5%. The level recommended by WHO, 20 μg m?3 year?1, was exceeded every year even without the DS contribution. The number of days in which the daily Israeli standard (150 μg m?3) was exceeded during the 12 years was 6–20 days per year. The number of days in which the daily standard was exceeded shows an increasing trend of 7 days per decade.PM2.5 in Israel is in the range 40–56% of PM10. PM2.5 values were over the recommended standard with and without DS. The contribution of DS to annual average of PM2.5 ranged from 3.6% to 19.1%.The automatic algorithm was calibrated with a list of Dust Storms identified by visual means supported by mineralogical analysis. Mineralogical analyses of single particles were performed using Environmental Scanning Electron Microscope (ESEM). Two representative samples are given. The main difference is that the particles of the Saudi-Arabian storm had much more palygorskite, while the North-African storm had more sea-salt and organic particles. The mineral composition differences indicate that analysis can differentiate between sources.  相似文献   

18.
We investigate how a recently suggested pathway for production of secondary organic aerosol (SOA) affects the consistency of simulated organic aerosol (OA) mass in a global three-dimensional model of oxidant-aerosol chemistry (GEOS-Chem) versus surface measurements from the interagency monitoring of protected visual environments (IMPROVE) network. Simulations in which isoprene oxidation products contribute to SOA formation, with a yield of 2.0% by mass reduce a model bias versus measured OA surface mass concentrations. The resultant increase in simulated OA mass concentrations during summer of 0.6–1.0 μg m−3 in the southeastern United States reduces the regional RMSE to 0.88 μg m−3 from 1.26 μg m−3. Spring and fall biases are also reduced, with little change in winter when isoprene emissions are negligible.  相似文献   

19.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

20.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号