首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

2.
Outdoor levels of fine particles (PM2.5; particles <2.5 μm) have been associated with cardiovascular health. Persons with existing cardiovascular disease have been suggested to be especially vulnerable. It is unclear, how well outdoor concentrations of PM2.5 and its constituents measured at a central site reflect personal exposures in Southern European countries. The objective of the study was to assess the relationship between outdoor and personal concentrations of PM2.5, absorbance and sulphur among post-myocardial infarction patients in Barcelona, Spain.Thirty-eight subjects carried personal PM2.5 monitors for 24-h once a month (2–6 repeated measurements) between November 2003 and June 2004. PM2.5 was measured also at a central outdoor monitoring site. Light absorbance (a proxy for elemental carbon) and sulphur content of filter samples were determined as markers of combustion originating and long-range transported PM2.5, respectively.There were 110, 162 and 88 measurements of PM2.5, absorbance and sulphur, respectively. Levels of outdoor PM2.5 (median 17 μg m3) were lower than personal PM2.5 even after excluding days with exposure to environmental tobacco smoke (ETS) (median after exclusion 27 μg m3). However, outdoor concentrations of absorbance and sulphur were similar to personal concentrations after exclusion of ETS. When repeated measurements were taken into account, there was a statistically significant association between personal and outdoor absorbance when adjusting for ETS (slope 0.66, p<0.001), but for PM2.5 the association was weaker (slope 0.51, p=0.066). Adjustment for ETS had little effect on the respective association of S (slope 0.69, p<0.001).Our results suggest that outdoor measurements of absorbance and sulphur can be used to estimate both the daily variation and levels of personal exposures also in Southern European countries, especially when exposure to ETS has been taken into account. For PM2.5, indoor sources need to be carefully considered.  相似文献   

3.
Regular exercise improves physiological processes and yields positive health outcomes. However, it is relatively less known that particulate matter (PM) exposure during outdoor exercises may increase several respiratory health problems depending on PM levels. In this study, the respiratory deposition doses (RDDs) in head airway (HD), tracheobronchial (TB), and alveolar (AL) regions of various PM size fractions (<10, <2.5, and <1 μm; PM10, PM2.5, and PM1) were estimated in healthy male and female exercisers in urban outdoors and within house premises. The highest RDDs were found for PM during morning hours in winter compared with remaining periods. RDDs in AL region for males and females, respectively, were 34.7 × 10?2 and 28.8 × 10?2 µg min?1 for PM10, 65.7 × 10?2 and 56.9 × 10?2 µg min?1 for PM2.5, and 76.5 × 10?2 and 66.3 × 10?2 µg min?1 for PM1. The RDD values in AL region were significantly higher in PM1 (27%) compared with PM2.5 (13%) and PM10 (2%) during exercise in all periods. This result showed that the morning peak hours in winter are more harmful to urban outdoor exercisers compared with other periods. This study also showed that the AL region would have been the main affected zone through fine particle (PM1) to all the exercisers.

Implications: Size-segregated particle concentrations in urban outdoors and within house premises were measured. The highest respiratory deposition doses (RDDs) were found for PM during morning hours in winter compared with remaining periods. During light exercise, the RDD values in alveolar (AL) region for PM10, PM2.5, and PM1 for male exercisers were significantly higher, 20.4%, 15.5%, and 15.4%, respectively, compared with female exercisers during morning peak hours in winter.  相似文献   

4.
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study at 219 non-smoking homes (once or twice) in Los Angeles County, CA, Elizabeth, NJ, and Houston, TX. Fourier transform infrared (FTIR) spectra of PM2.5 samples were collected, and FG absorbances were quantified by partial least squares (PLS) regression, a multivariate calibration method.There is growing evidence in the literature that a large majority of indoor-generated PM2.5 is organic. The current research suggests that indoor-generated PM2.5 is enriched in aliphatic carbon–hydrogen (CH) FGs relative to ambient outdoor PM2.5. Indoor-generated CH exceeded outdoor-generated CH in 144 of the 167 homes for which indoor or outdoor CH was measurable; estimated indoor emission rates are provided. The strong presence of aliphatic CH FGs in indoor PM2.5 makes particulate organic matter substantially less polar indoors and in personal exposures than outdoors. This is a substantial new finding. Based on the quantified FGs, the average organic molecular weight (OM) per carbon weight (OC), a measure of the degree of oxygenation of organic PM, is in the range of 1.7–2.6 for outdoor samples and 1.3–1.7 for indoor and personal samples. Polarity or degree of oxygenation effects particle deposition in exposure environments and in the respiratory system.  相似文献   

5.
In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 16 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorded concurrent apartment, central indoor, outdoor and ambient site PM2.5 concentrations. Using the Baltimore panel study data, we develop a Bayesian hierarchical model to characterize the relationship between personal exposure and concentrations of PM2.5 indoors and outdoors. Personal exposure is expressed as a linear combination of time spent in microenvironments and associated microenvironmental concentrations. The model incorporates all available monitoring data and accounts for missing data and sources of uncertainty such as measurement error and individual differences in exposure. We discuss the implications of using personal versus ambient PM2.5 measurements in characterization of personal exposure to PM2.5.  相似文献   

6.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

7.
ABSTRACT

We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (>64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM25, PM10, SO4 2-, O3, NO2, SO2, and exhaust-related VOCs.

Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM25 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2 5 sources. Evidence for this was provided by SO4 2-measurements, which can be thought of as a tracer for ambient PM25. For SO4 2-, personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments.

Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

8.
The 24-h average coarse (PM10) and fine (PM2.5) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM10 and PM2.5 concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM10 concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM2.5 concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM10 and PM2.5 masses showed a high concentration in winter followed by monsoon and summer seasons.The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM10 and PM2.5 concentrations at the study area. Results indicated that marine aerosol (40.4% in PM10 and 21.5% in PM2.5) and secondary PM (22.9% in PM10 and 42.1% in PM2.5) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM10 and 6% in PM2.5), biomass burning (0.7% in PM10 and 14% in PM2.5), tire and brake wear (4.1% in PM10 and 5.4% in PM2.5), soil (3.4% in PM10 and 4.3% in PM2.5) and other sources (12.7% in PM10 and 6.8% in PM2.5).  相似文献   

9.
ABSTRACT

Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency (EPA)-sponsored 1998 Baltimore and 1999 Fresno PM exposure studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly (>65 years old) subjects. Integrated 24-hr filter-based PM2.5 or PM10 mass measurements [using Personal Environmental Monitors(PEMs)] included personal measurements, indoor and outdoor residential measurements, and measurements at a central indoor site and a community monitoring site. A subset of the participants in each study wore passive nephelometers that continuously measured (1-min averaging time) particles ranging in size from 0.1 to ~10 um. Significant activities and locations were identified by a statistical mixed model (p < 0.01) for each study population based on the measured PM2.5 or PM10 mass and time activity data. Elevated PM concentrations were associated with traveling (car or bus), commercial locations (store, office, mall, etc.), restaurants, and working.

The modeled results were compared to continuous PM concentrations determined by the nephelometers while participants were in these locations. Overall, the nephelometer data agreed within 6% of the modeled PM2.5 results for the Baltimore participants and within ~20% for the Fresno participants (variability was due to zero drift associated with the nephelometer). The nephelom-eter did not agree as well with the PM10 mass measurements, most likely because the nephelometer optimally responds to fine particles (0.3–2 um). Approximately one-half (54 ± 31%; mean ± standard deviation from both studies) of the average daily PM2.5 exposure occurred inside residences, where the participants spent an average of 83 ± 10% of their time. These data also showed that a significant portion of PM2.5 exposure occurred in locations where participants spent only 4–13% of their time.  相似文献   

10.
Many individuals work outdoors in the formal and informal economy of the large urban areas in developing countries, where they are potentially exposed for long periods to high concentrations of ambient airborne particulate matter (PM). This study describes the personal exposures to PM of 2.5 μm aerodynamic diameter and smaller (PM2.5) for a sample of outdoor and indoor workers in two cities, Mexico City and Puebla, in central Mexico.Thirty-six workers in Mexico City and 17 in Puebla were studied. Thirty were outdoor workers (i.e., taxi and bus drivers, street vendors, and vehicle inspectors) and 23 were indoor (office) workers. Their personal exposures to PM2.5 were monitored for a mean 19-h period. In Mexico City, the street vendors and taxi drivers overall exposures were significantly higher than indoor workers were. In Puebla, bus drivers had a higher overall exposure than vehicle inspectors or indoor workers. Most of the exposures were above the 65 μg m−3 24-h Mexican standard.In Mexico City, exposures to Si, Ti, Cr, Mn, Fe, Ni, Cu, Mo and Cd were higher for outdoor than for indoor workers. In Puebla, exposures to Si, S, K, Ca, Ti, V, Mn, and Zn also were higher for outdoor workers. In Mexico City outdoor workers exposures to Cu, Pb, Cr, Se and Mo were 4 or more times higher than for Puebla outdoor workers, while Puebla outdoor workers’ exposures to V, Si, Fe and Ca were 3 or more times higher than Mexico City outdoor workers.These results suggest that for these outdoor workers the elevated local ambient air PM concentrations and an extended period spent outside are more important contributors to total exposures than indoor concentrations. These workers could be at particular risk of increased morbidity and mortality associated with ambient PM.  相似文献   

11.
Multiple 24-h average outdoor, indoor and personal respirable particulate matter (RPM) measurements were made in different urban residential colonies to determine major routes of personal exposure. The study area was Bhilai-Durg, District Durg, Chhattisgarh, India. About 100 residentials from each of two selected colonies have been surveyed for consent to participate in the study and for preparation of time–activity diary. On the basis of their time–activity diary, residentials have been categorized into three types: type-A, purely residential; type-B, residents who go out, and type-C, residence who go into work, specially in industrial area. A total of 28 adult participants (14 males and 14 females; mean age 40±15, range 21–61 years) were selected and monitored longitudinally during the summer (15 March–15 June) of 2004. Participants’ residential indoor RPM level and also local ambient outdoor RPM levels were measured,and these are done simultaneous with personal monitoring. Residential indoor and ambient outdoors RPM monitoring sessions were throughout the year to obtain infiltration factor more precisely. To compare RPM levels with Indian National Ambient Air Quality Standards (NAAQS) of PM10, simultaneous measurements of PM10 were also done with the course of ambient outdoor RPM monitoring. RPM levels in indoors were higher compared to ambient outdoors. The annual average ratio RPM/PM10 was found to vary significantly among residential sites due to variation in surroundings. Source contribution estimates (SCE) of personal exposure to RPM in selected 12 residences (six from each colony) have been investigated using chemical mass balance model CMB8. Ambient outdoors, residential indoors, soils and road-traffic borne RPM were identified as main routes and principal sources of personal RPM. Results of model output have shown that residential indoors and soil-borne RPM are the major routes of personal exposure.  相似文献   

12.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

13.
14.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

15.
Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25–55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM2.5 and NO2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM2.5 and NO2. A high correlation was observed between the personal 48-h PM2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM2.5 and the personal work time PM2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM2.5) and 19% (NO2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM2.5 and NO2 levels into account.  相似文献   

16.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

17.
Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM10, PM2.5, and PM1), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic.

Implications: Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L?1), mass concentration (µg m?3), and dust mass fractions shown as PM10, PM2.5, and PM1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.  相似文献   

18.
19.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

20.
ABSTRACT

The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号