首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O3 concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O3.  相似文献   

2.
Assessment of yield losses in tropical wheat using open top chambers   总被引:2,自引:0,他引:2  
The present study deals with the evaluation of effects of ambient gaseous air pollution on wheat (Triticum aestivum L. var. HUW-234) growing in a suburban area situated in eastern Gangetic plain of India, using open top chambers. Eight hourly air monitoring was conducted for ambient concentrations of SO2, NO2 and O3 in filtered chambers (FCs), non-filtered chambers (NFCs) and open plots (OPs). Various morphological, physiological and biochemical parameters were assessed during different developmental stages and finally yield parameters were quantified at the time of harvest.Mean concentrations of SO2, NO2 and O3 were 8.4, 39.9 and 40.1 ppb, respectively during the experiment in NFCs. Concentrations of SO2, NO2 and O3 reduced by 74.6%, 84.7% and 90.4%, respectively in FCs as compared to NFCs. Plants grown in FCs showed higher photosynthetic rate, stomatal conductance, chlorophyll content and Fv/Fm ratio as compared to the plants in NFCs and OPs. Lipid peroxidation, proline, total phenol and ascorbic acid contents and peroxidase activity were higher in plants grown in NFCs. There were improvements in morphological parameters of plants growing in FCs as compared to those in NFCs and OPs. Yield of plants also increased significantly in FCs as compared to those ventilated with ambient air (NFCs) or grown in OPs. During the vegetative phase, NO2 concentrations were higher than O3, but O3 became dominant pollutant during the time of grain setting and filling. The study concludes that O3 and NO2 are the main air pollutants in the sub-urban areas causing significant yield reductions in tropical wheat plants.  相似文献   

3.
The concentrations of O3 are increasing, which may have potential adverse effects on crop yield. This paper deals with assessing the intraspecific variability of two wheat cultivars (PBW 343 and M 533) at different growth stages using open top chambers. Mean O3 concentrations were 50.2 and 53.2 ppb, and AOT40 values were 9 and 12.1 ppm h, respectively, in 2008–2009 and 2009–2010. Reproductive stage showed higher AOT40 values (6.9 and 9.2 ppm h) compared to vegetative (2.23 and 2.9 ppm h). Critical levels of a 3-month AOT 40 of 3 ppm h led to 6 % yield reduction in two wheat cultivars for two consecutive years. Variations in photosynthesis rate, stomatal conductance (gs), Fv/Fm ratio, photosynthetic pigments, primary and secondary metabolites, morphological parameters, and yield attributes were measured at vegetative and reproductive stages. Reductions in number of leaves, leaf area, total biomass, root/shoot ratio, RGR, photosynthetic pigments, protein content, and Fv/Fm ratio in PBW 343 were more than M 533 at reproductive stage. Photosynthetic rate did not vary between the cultivars, but gs was higher in PBW 343 compared to M 533 under ambient O3. Higher total phenolics and peroxidase activity were recorded in M 533 at reproductive stage conferring higher resistance at latter age. Results of O3 resistance showed that M 533 was sensitive compared to PBW 343 during vegetative stage but developed more resistance at reproductive stage. PBW 343 with larger leaf area and high gs is more sensitive than M 533 with smaller leaf area and low gs. The study suggests that the sensitivity varied with plant growth stage, and the plant showing higher sensitivity during vegetative period developed more resistance during reproductive period due to higher defense mechanism. Though the yield reductions were same in both cultivars under ambient O3, the mechanism of acquiring the resistance is different between the cultivars.  相似文献   

4.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

5.
The winter ephemeral Dimorphotheca pluvialis was grown in open-top chambers in ambient or elevated CO2 (350 or 650 micromol mol(-1)), combined with ambient (2.39 to 7.59 kJ m(-2) d(-1)) or increased (4.94 to 11.13 kJ m(-2) d(-1)) UV-B radiation. Net CO2 assimilation rate and leaf water use efficiency increased in elevated CO2, but increased UV-B did not affect gas exchange. Leaf biomass was greater under increased UV-B, but vegetative biomass was unaffected in elevated CO2. Initiation of reproduction was delayed, and proportional investment in reproductive biomass at harvest was reduced in elevated CO2. Increased UV-B stimulated reproduction, particularly in ambient CO2, but also in elevated CO2 at a later stage. Changes in reproductive phenology and prolonged development in elevated CO2 during the stressful late season could indirectly be detrimental to reproductive success of D. pluvialis, but stimulation of reproduction by enhanced UV-B may to some extent mitigate this.  相似文献   

6.
The present experiment was aimed at assessing the impact of simulated acidic precipitation (SAR) on growth, biomass accumulation and yield of two cultivars of wheat (Triticum aestivum L.), Malviya 206 and 234, varying in cuticular thickness and leaf area. Wheat cultivars were exposed to simulated rain acidified to pH 5.6 (control), 5.0, 4.5, 4.0 and 3.0 from 30 days of age, twice a week for five weeks. The plants received ambient precipitation of unknown acidity, as well as the acid rain treatments. Growth parameters such as shoot height, root length, and leaf area were reduced significantly in treated plants at different growth stages. Above and below-ground biomass also decreased significantly in the plants treated with acidic precipitation. Relative to control, the number of grains per plant and yield per m(2) declined significantly at all SAR treatments. The hypothesis that the variety with thinner cuticle and greater leaf area would be more susceptible to acidic precipitation was not supported by the present study.  相似文献   

7.
Intraspecific variation in six cultivars of clover Trifolium alexandrinum L., (Bundel, Wardan, JHB-146, Saidi, Fahli, and Mescavi) has been studied with ambient and elevated O3 (ambient?+?10 ppb O3) in open top chambers. Significant effect of elevated O3 was detected on different morphological, physiological, and biochemical parameters depicting differential response among the test cultivars. Results showed that the magnitude of O3 induced foliar injury symptoms varied in all the cultivars. Ozone significantly depressed photosynthetic rate, stomatal conductance, and photosynthetic efficiency, although variations were cultivar specific. Ozone treatment diminished total biomass of all the cultivars; reduction was highest in Wardan with least O3 resistance followed by Bundel, JHB-146, Saidi, Mescavi, and Fahli. According to the cumulative sensitive index, variations in the sensitivity showed that two cultivars (Wardan and Bundel) were sensitive to elevated O3, while other three cultivars (Fahli, Saidi, and Mescavi) were resistant, and JHB-146 showed intermediate sensitivity. Therefore, the present study supported the selection of sensitive cultivar of clover as a bioindicator for O3 under Indian conditions for the areas experiencing higher concentrations of O3.  相似文献   

8.
The impact of distillery effluent in various concentrations (1, 2.5, 5, 10, 25, 50, 75 and 100%) on the seed germination, Speed of Germination Index, growth behaviour, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and the seed protein content of Cicer arietinum L. plants was investigated. The percentage and speed of germination of seeds were increasingly retarded with increase in effluent concentration and at 100% concentration there was no germination. The seedlings exhibited maximum shoot length at 5% concentration and maximum root length at 2.5% concentration. The values of root and shoot lengths, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and seed protein content in pot plants exhibited a gradual increase from the control up to 5% concentration and decreases at higher concentrations. The very high BOD load and the presence of excessive concentrations of soluble salts could be responsible for the toxicity of the effluent. The effluent at up to 5% concentration was, however, beneficial for the overall growth parameters studied and can thus be used as a liquid fertilizer.  相似文献   

9.
Dimberg LH  Gissén C  Nilsson J 《Ambio》2005,34(4-5):331-337
The concentrations of avenanthramides (AVAs), hydroxycinnamic acids (HCAs), a sucrose-linked truxinic acid (TASE), and certain agronomic parameters were analyzed in organically and conventionally grown oats. Three cultivars of oats (i.e. Freja, Sang, and Matilda) were grown according to standards for both conventional and organic farming in Sweden, from 1998 to 2000. Two levels of nitrogen (N) and three replicates were included. Overall, there were significant differences between years, cultivars, and N rate for AVA concentration in the grains, but there were no differences in concentration as a consequence of the conventional or organic cropping system used. The AVA content was higher in the samples grown in 2000, particularly in the cultivar Matilda, and was negatively affected by higher N rates. The HCAs showed cultivar and year differences, but were not influenced by N rates or the cropping system. The HCA content was highest in Matilda, and was significantly lower in samples grown in 1999. The concentration of TASE differed only between years, and was about 100% higher in samples from 1999, compared with samples from 1998 and 2000. The AVA and HCA concentrations were negatively correlated to the yield and specific weight of the grains and positively correlated to the protein content. Conversely, the concentration of TASE was positively correlated to the yield. The specific parameters responsible for the variation in the phenolic compounds are not known, but it seems that factors affecting the yield and/or the specific weight also affect the concentrations of AVAs, HCAs, and TASE in oat grains.  相似文献   

10.
The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.  相似文献   

11.
不同生育期美人蕉-微生物修复富营养化水体   总被引:1,自引:0,他引:1  
生物修复水体富营养化,尤其是植物和微生物联合修复为目前水体富营养化治理方面的研究热点。不同生育期植物和微生物联合修复鲜见报道。研究不同生育期美人蕉和固定化微生物对富营养化水体的联合修复作用。结果表明,营养生长期和开花期美人蕉-微生物组处理前3天,富营养化水体中不同形态氮和磷浓度快速下降,用于美人蕉生长发育。从富营养化水体氮去除效果来看,营养生长期美人蕉-微生物联合处理去除效果略好于开花期,对磷的去除效果相反。美人蕉吸收氮元素为营养器官利用,其营养器官全氮增长量与生殖器官(花)形成显著差异(P<0.05)。花是美人蕉全磷含量最高、全磷增长量最高的器官,其全磷含量和全磷增长量与营养器官均形成显著差异(P<0.05)。实验结果表明,不同生育期美人蕉-微生物联合处理对氮和磷的吸收利用存在差异。  相似文献   

12.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

13.
To investigate the effects of low (0.05 micromol/mol) and relatively low (0.10 micromol/mol) concentrations of ozone on photoassimilate partitioning, rice plants grown in a water culture were fed with (13)C-labelled carbon dioxide at the reproductive stage in an assimilation chamber with constant concentration of (12)CO(2) and (13)CO(2). Rice plants were exposed to ozone 4 weeks before and 3 weeks after (13)CO(2) feeding. The dry weight of whole plants decreased with increasing ozone concentration, whereas net photosynthetic rate (apparent CO(2) uptake per unit leaf area) was unaffected, compared with the control, at the time of (13)CO(2) feeding. Dry matter distribution into leaf sheaths and culms was reduced more than that into leaf blades by ozone exposure. Although panicle dry weight per plant was reduced by ozone, the percentage of panicle dry weight to the whole plant tended to increase considerably. Exposure to ozone accelerated translocation of (13)C from source leaves to other plant parts. Partitioning of (13)C to panicles and roots was higher under ozone treatment than in the control. Respiratory losses of fixed (13)C from plants tended to decrease under treatment with ozone. The increase in photoassimilate partitioning in panicles can be considered to be an acclimation response of rice plants to complete reproductive stage under the restricted biomass production caused by ozone.  相似文献   

14.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   

15.
Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of yield and AOT40. Cultivar response reflects that QPM performed better than NQPM against elevated O3.  相似文献   

16.
The correlations among arsenic (As) accumulation in grains and straw, rates of radial oxygen loss (ROL), and porosity of roots using 25 rice cultivars were investigated based on two pot experiments: (1) soil with addition of 100 mg As kg?1 for analysis of As in grains and straw, and (2) deoxygenated solution for analyzing rates of ROL and porosity of roots. The results showed that there were great differences in grain As (0.71–1.72 mg kg?1) and straw As (15.6–31.7 mg kg?1), rates of ROL (7.40–13.24 mmol O2 kg?1 root d.w. h?1), and porosity (20.91–33.08%) among the cultivars. There were significant negative correlations between As in grains or straw and ROL and porosity, and significant positive correlations between rates of ROL and porosities, respectively. Rice cultivars with high porosities tended to possess higher rates of ROL, and had higher capacities for limiting the transfer of As to aboveground tissues.  相似文献   

17.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   

18.
Olive tree leaf samples were collected to investigate their possible use for biomonitoring of lipophilic toxic substances. The samples were analyzed for 28 polychlorinated biphenyls (PCB) congeners. Twelve congeners were detected in the samples. PCB-60, 77, 81, 89, 105, 114, and 153 were the most frequently detected congeners ranging from 32 % for PCB-52 to 97 % for PCB-81. Σ12PCBs concentration varied from below detection limit to 248 ng/g wet weight in the sampling area, while the mean congener concentrations ranged from 0.06 ng/g (PCB-128?+?167) to 64.2 ng/g wet weight (PCB-60). Constructed concentration maps showed that olive tree leaves can be employed for the estimation of spatial distrubution of these congeners.  相似文献   

19.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   

20.
Potted plants of commercial cultivars of rape (Brassica napus L., cv. 'callypso'), summer barley (Hordeum vulgare L., cvs. 'arena' and 'hockey') and bush beans (Phaseolus vulgaris L., cvs. 'rintintin' and 'rosisty') were continuously exposed in open-top chambers to sulphur dioxide (SO(2)) for the whole growing season in order to assess effects of this pollutant on growth and various yield parameters. Treatments consisted of charcoal-filtered air (CF) and CF supplemented with four levels of SO(2), resulting in mean exposure concentrations (microg m(-3)) of approximately 8, 50, 90, 140 and 190. With the exception of the 1000 seeds weight, which was slightly reduced, dry matter production and yield parameters of rape remained unaffected by all SO(2) concentrations or were even stimulated. Compared to CF vegetative growth of both bean cultivars was reduced by 10-26% at all SO(2) levels; however, with significant effects only for cv. 'rintintin'. While all SO(2) additions reduced significantly the yield (dry weight of pods) of the bean cultivar 'rosisty' between 17% and 32%, cv. 'rintintin' showed a significant reduction of up to 42% only at the two highest pollutant concentrations. Dry matter production of the barley cultivars was mainly impaired at SO(2) concentrations > 100 microg m(-3) with a reduction of 30-52%. While nearly all yield parameters of cv. 'hockey' reacted similar to the dry matter production, the yield of cv. 'arena' was reduced already at the low SO(2) levels. At a treatment concentration of 90 microg SO(2) m(-3) a significant yield loss of 30% was recorded. A reduction of the 1000 grains weight mainly contributed to these yield losses observed for both barley cultivars. From these results, it may be assumed that SO(2) concentrations within the range 50-90 microg m(-3) are potentially phytotoxic to some crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号