首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present one of the most comprehensive studies of night-time radical chemistry to date, from the Tropospheric ORganic CHemistry experiment (TORCH) in the summer of 2003. TORCH provided a wealth of measurements with which to study the oxidizing capacity of the atmosphere. The measurements provided input to a zero-dimensional box model which has been used to study night-time radical chemistry during the campaign. Average night-time predicted concentrations of OH (2.6 × 105 molecule cm?3), HO2 (2.9 × 107 molecule cm?3) and [HO2+ΣRO2] radicals (2.2 × 108 molecule cm?3) were an order of magnitude smaller than those predicted during the daytime. The model under-predicted the night-time measurements of OH, HO2 and [HO2+ΣRO2] radicals, on average by 41%, 16% and 8% respectively. Whilst the model captured the broad features of night-time radical behaviour, some of the specific features that were observed are hard to explain. A rate of radical production assessment was carried out for the whole campaign between the hours of 00:00 and 04:00. Whilst radical production was limited owing to the absence of photolytic reactions, production routes via the reactions of alkenes with O3 provided an effective night-time radical source. Nitrate radical concentrations were predicted to be 0.6 ppt on average with a peak of 18 ppt on August 9th during a polluted heat wave period. Overall, the nitrate radical contributes about a third of the total initiation via RO2, mostly through reaction with alkenes.  相似文献   

2.
Much rain and strong winds caused by a cold front occurred in Beijing during the period of Sep. 27 to Oct. 4, 2004 and led to sharp drops in maximum and mean concentrations of HONO, HCHO, O3, and NO2, i.e., the maximum concentrations were reduced by 5.9, 21.3, 45.6, and 44.4 ppb, respectively, and the mean concentrations were decreased by 4.0, 5.5, 30.3, and 32.3 ppb, respectively. For daily HOx production rates HONO photolysis was the largest contributor and over 90% contributions were from photolysis of HONO and HCHO. Large number and area percentages of soot aggregate from PM10, and high correlations between concentrations of PM10 and chemical formation of HONO suggested that heterogeneous reactions of NO2 on surfaces of soot aggregate could be a key source of HONO in the heavy traffic areas of Beijing during the night and should be considered in air quality simulations for such areas.  相似文献   

3.
Formaldehyde (HCHO), as well as correlative pollutants was measured from 1 to 31 July in 2007 at Mazhuang, a rural site located in the east of China. Gaseous HCHO was scrubbed from the air with an acidic 2,4-dinitrophenylhydrazine (DNPH) solution, which leaded to the reaction of HCHO with DNPH and produced a stable product, 2,4-dinitrophenylhydrazone, followed by online analysis by high-performance liquid chromatography (HPLC) coupled with Ultraviolet detector. During the observation period, mixing ratios of HCHO ranged from 0.2 ppbv to 6.2 ppbv, with an average of 1.5 ± 0.67 ppbv. HCHO shows an evident diurnal variation, the maximum appeared during 12:00–14:00. The average concentration diurnal variations of measured HCHO, ozone (O3), Methylhydroperoxides (MHP, CH3OOH), hydrogen peroxide (H2O2), nitrogen oxides (NOx) and meteorological parameters were compared. The similar variations of HCHO, O3 and radiation imply that photo-oxidation of hydrocarbons might be the major source for HCHO. Based on the maximum incremental reactivity (MIR) coefficient of HCHO, the calculation shows that HCHO contributes about 20% to total observed O3 during the study period. In order to compare the contributions of O3, HCHO and HONO to OH radical, photolysis rate parameters (J-values) of the three compounds were calculated by the Tropospheric Ultraviolet and Visible (TUV) Radiation Model (4.4 version). Based on the comparison, this study reaches the conclusion that O3 is the dominant source of OH radical at Mazhuang. This study also uses P(HCHO)/P(O3) which represents the ratio of contrbutions of HCHO and O3 to OH radical, to discuss the action of HCHO in OH radical soucers. The result shows that P(HCHO)/P(O3) is 12.5% on average, with the maximum of 21.0% at 13:00P.M. and minimum of 7.5% before 9:00A.M. and after 17:00P.M..Therefore HCHO is also an important source of OH radical and cannot be ignored.  相似文献   

4.
Two different steady-state methods are applied to calculate OH radical concentrations based on the rates of known source and sink processes. The first method, which calculates only OH radical concentrations from measured data including HO2 gives good correlation with measured OH concentrations but overpredicts by 30%. The second method applied calculates OH, HO2 and RO2 radical concentrations simultaneously. This second method overestimates the measured concentrations of OH by almost 3 times. This apparent overprediction may be a result of calculated concentrations of HO2 which appear too high and may be indicative of a gap in our understanding of the relevant peroxy radical chemistry or a result of the limited peroxy radical chemistry assumed by the method.  相似文献   

5.
Nitrous acid is an important component of nighttime N-oxide chemistry, and provides a significant source of both OH and NO in polluted urban air masses shortly after sunrise. Several recent studies have called for new sources of HONO to account for daytime levels much higher than are consistent with current understanding. However, measurement of HONO is problematic, with most in-situ techniques reporting higher values than simultaneous optical measurements by long-path DOAS, especially during daytime. The discrepancy has been attributed to positive interference in the in-situ techniques, negative interference in DOAS retrievals, the difficulty of comparing the different air masses sampled by the methods, or combinations of these.During August and September 2006, HONO mixing ratios from collocated long-path DOAS and automated mist-chamber/ion chromatograph (MC/IC) systems ranged from several ppbv during morning rush hour to daytime minima near 100 pptv. Agreement between the two techniques was excellent across this entire range during many days, showing that both instruments accurately measured HONO during this campaign. A small bias towards higher LP-DOAS observations at night can be attributed to slow vertical mixing leading to pronounced HONO profiles. A positive daytime bias of the MC/IC instrument during several days in late August/early September was correlated with photochemically produced compounds such as ozone, HNO3 and HCHO, but not with NO2, NOx, HO2NO2, or the NO2 photolysis rate. While an interferant could not be identified organic nitrites appear a possible explanation for our observations.  相似文献   

6.
A detailed chemical box model has been constructed based on a comprehensive chemical mechanism (the Master Chemical Mechanism) to investigate indoor air chemistry in a typical urban residence in the UK. Unlike previous modelling studies of indoor air chemistry, the mechanism adopted contains no simplifications such as lumping or the use of surrogate species, allowing more insight into indoor air chemistry than previously possible. The chemical mechanism, which has been modified to include the degradation reactions of key indoor air pollutants, contains around 15,400 reactions and 4700 species. The results show a predicted indoor OH radical concentration up to 4.0×105 molecule cm−3, only a factor of 10–20 less than typically observed outdoors and sufficient for significant chemical cycling to take place. Concentrations of PAN-type species and organic nitrates are found to be important indoors, reaching concentrations of a few ppb. Sensitivity tests highlight that the most crucial parameters for modelling the concentration of OH are the light-intensity levels and the air exchange rate. Outdoor concentrations of O3 and NOX are also important in determining radical concentrations indoors. The reactions of ozone with alkenes and monoterpenes play a major role in producing new radicals, unlike outdoors where photolysis reactions are pivotal radical initiators. In terms of radical propagation, the reaction of HO2 with NO has the most profound influence on OH concentrations indoors. Cycling between OH and RO2 is dominated by reaction with the monoterpene species, whilst alcohols play a major role in converting OH to HO2. Surprisingly, the absolute reaction rates are similar to those observed outdoors in a suburban environment in the UK during the summer. The results from this study highlight the importance of tailoring a model for its particular location and the need for future indoor air measurements of radical species, nitrated species such as PANs and organic nitrates, photolysis rates of key species over the range of wavelengths observed indoors and concurrent measurements of outdoor air pollutant concentrations.  相似文献   

7.
HO2 radical concentrations were measured by a laser-induced fluorescence instrument for three nighttime periods during the intensive field campaign at Rishiri Island, Japan, in June 2000. The HO2 mixing ratio had temporal variations around its average of 4.2±1.2 (1σ) pptv and showed a positive correlation with the summed mixing ratio of four monoterpene species, α-pinene, β-pinene, camphene, and limonene, that sometimes reached 1 ppbv. Our model calculations suggested that ozonolysis reactions of monoterpenes were the main source of nighttime radicals and they explained 58% of measured HO2 concentration levels. The model roughly reproduced the dependence of the HO2 mixing ratio on the square root of the radical production rate due to the ozonolysis reactions of the monoterpenes. However, the absolute HO2 mixing ratio was significantly underpredicted by the model. We discuss possible reasons in terms of misunderstood RO2 chemistry, RO2 interference with HO2 observations, unknown radical production process associated by high NO2 mixing ratio, and the contribution of unmeasured olefinic species to radical production via their reactions with ozone.  相似文献   

8.
Both similarities and differences in summertime atmospheric photochemical oxidation appear in the comparison of four field studies: TEXAQS2000 (Houston, 2000), NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003), and TRAMP2006 (Houston, 2006). The compared photochemical indicators are OH and HO2 abundances, OH reactivity (the inverse of the OH lifetime), HOx budget, OH chain length (ratio of OH cycling to OH loss), calculated ozone production, and ozone sensitivity. In terms of photochemical activity, Houston is much more like Mexico City than New York City. These relationships result from the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx), which are comparable in Houston and Mexico City, but much lower in New York City. Compared to New York City, Houston and Mexico City also have higher levels of OH and HO2, longer OH chain lengths, a smaller contribution of reactions with NOx to the OH reactivity, and NOx-sensitivity for ozone production during the day. In all four studies, the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) are significant, if not dominant, HOx sources. A problematic result in all four studies is the greater OH production than OH loss during morning rush hour, even though OH production and loss are expected to always be in balance because of the short OH lifetime. The cause of this discrepancy is not understood, but may be related to the under-predicted HO2 in high NOx conditions, which could have implications for ozone production. Three photochemical indicators show particularly high photochemical activity in Houston during the TRAMP2006 study: the long portion of the day for which ozone production was NOx-sensitive, the calculated ozone production rate that was second only to Mexico City's, and the OH chain length that was twice that of any other location. These results on photochemical activity provide additional support for regulatory actions to reduce reactive VOCs in Houston in order to reduce ozone and other pollutants.  相似文献   

9.
Boundary layer concentrations of hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured at 1180 m elevation in a mountainous, forested region of north-western Greece during the AEROsols formation from BIogenic organic Carbon (AEROBIC) field campaign held in July–August 1997. In situ measurements of OH radicals were made by laser-induced fluorescence (LIF) at low pressure, exciting in the (0, 0) band of the A–X system at 308 nm. HO2 radicals were monitored by chemical titration to OH upon the addition of NO, with subsequent detection by LIF. The instrument was calibrated regularly during the field campaign, and demonstrated a sensitivity towards OH and HO2 of 5.2×105 and 2.4×106 molecule cm−3, respectively, for a signal integration period of 2.5 min and a signal-to-noise ratio of 1. Diurnal cycles of OH and HO2 were measured on 10 days within a small clearing of a forest of Greek Fir (Abies Borisi-Regis). In total 4165 OH data points and 1501 HO2 data points were collected at 30 s intervals. Noon-time OH and HO2 concentrations were between 4–12×106 and 0.4–9×108 molecule cm−3, respectively. The performance of the instrument is evaluated, and the data are interpreted in terms of correlations with controlling variables. A significant correlation (r2=0.66) is observed between the OH concentration and the rate of photolysis of ozone, J(O1D). However, OH persisted into the early evening when J(O1D) had fallen to very low values, consistent with the modelling study presented in the following paper (Carslaw et al., 2001, OH and HO2 radical chemistry in a forest region of north-western Greece. Atmospheric Environment 35, 4725–4737) that predicts a significant radical source from the ozonolysis of biogenic alkenes. Normalisation of the OH concentrations for variations in J(O1D) revealed a bell-shaped dependence of OH upon NOx (NO+NO2), which peaked at [NOx] ∼1.75 ppbv. The diurnal variation of HO2 was found to be less correlated with J(O1D) compared to OH.  相似文献   

10.
An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2+RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7–9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2+RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute ∼25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(1D)+H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O) are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HOx sink involves the HO2+HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the O(1D)+H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx, the SP HOx sinks are dominated by HOx–NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible.  相似文献   

11.
The kinetics of the heterogeneous reaction between gaseous HCHO and TiO2/SiO2 mineral coatings were investigated using a coated-wall flow tube to mimic HCHO loss on mineral aerosol and TiO2 coated depolluting urban surfaces. The measured uptake kinetics were strongly enhanced when the flow tube was irradiated with 340–420 nm UV light with an irradiance of 1.45 mW cm?2. The associated BET uptake coefficients ranged from (3.00 ± 0.45) × 10?9 to (2.26 ± 0.34) × 10?6 and were strongly dependent on HCHO initial concentration, relative humidity, temperature, and TiO2 content in the mineral coating, which ranged from 3.5 to 32.5 ppbv, 6–70%, 278–303 K, and 1–100 %wt, respectively. The measured kinetics were well described using a Langmuir–Hinshelwood type formalism. The estimated uptake coefficients were used to discuss the importance of heterogeneous HCHO surface loss, in terms of deposition lifetimes, as compared to major homogeneous gas-phase losses such as OH reaction and photolysis. It is found that deposition may compete with gas-phase removal of HCHO in a dense urban environment if more than 10% of the urban surface is covered with TiO2 treated material.  相似文献   

12.
13.
The effect of HOx radicals (OH and HO2) and ozone (O3) on aerosol formation and aging has been studied. Experiments were performed in presence as well as in absence of oxygen in a flow-through chamber at 299 K for three organic precursor gases, isoprene, α-pinene and m-xylene. The HOx source was the UV photolysis of humidified air or nitrogen and was measured with a GTHOS (Ground-based Tropospheric Hydrogen Oxides Sensor). The precursor gases concentration was monitored with an online GC-FID. The aerosol mass was then quantified by a Tapered Element Oscillating Microbalance (TEOM). Typical oxidant mixing ratios were (0–4.5) ppm for O3, 200 pptv for OH and 3 ppbv for HO2. A simple kinetics model is used to infer the aerosol production mechanism. In the present of O3 (or O2), the SOA yields were 0.46, 0.036 and 0.12 for α-pinene with an initial concentration of 100 ppbv (RH = 37%), isoprene with an initial concentration of 177 ppbv (RH = 50%) and m-xylene with an initial concentration of 100 ppbv (RH = 37%), respectively. When the chosen precursor gases reacted with HOx in the absence of O3, the maximum SOA yields were significantly increased by factors of 1.6 for isoprene 1.1 for α-pinene, and 3 for m-xylene respectively. The comparison of the calculated and measured potential aerosol mass concentrations as function of time shows that presence of ozone or oxygen can influence the aerosol yield and the absence of ozone or oxygen in the system resulted in high concentrations of its organic aerosol products.  相似文献   

14.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

15.
16.
As the host city of the 2008 Olympic games, Beijing implemented a series of air pollution control measures before and during the Olympic games. Ambient formaldehyde (HCHO) concentrations were measured using a fluorometric instrument based on a diffusion scrubber and the Hantzsch reaction; hydrocarbons were simultaneously measured using gas chromatography–mass spectrometry (GC–MS). Meteorological parameters, CO, O3, and NO2 concentrations were measured by standard commercial instrumentation. In four separate periods: (a) before the vehicle plate number control (3–19 July); (b) during the Olympic Games (8–24 August); (c) during the Paralympic Games (6–17 September) and (d) after the vehicle control was ceased (21–28 September), the average HCHO mixing ratios were 7.31 ± 2.67 ppbv, 5.54 ± 2.41 ppbv, 8.72 ± 2.48 ppbv, and 6.42 ± 2.79 ppbv, while the total non-methane hydrocarbons (NMHCs) measured were 30.41 ± 18.08 ppbv, 18.12 ± 9.38 ppbv, 30.50 ± 13.37 ppbv, and 33.33 ± 15.85 ppbv, respectively. Both HCHO and NMHC levels were the lowest during the Olympic games, and increased again during the Paralympic games even with the same vehicle control measures operative. Similar diurnal HCHO and O3 patterns indicated that photo-oxidation of NMHCs may be the major source of HCHO. The diurnal profile of total NMHCs was very similar to that of NO2 and CO: morning and evening peaks appeared in rush hours, indicating even after strict vehicle control, automobile emission may still be the dominant source of the HCHO precursors. The contributions of HCHO, alkanes, alkenes, and aromatics to OH loss rates were also calculated. HCHO contributed 22 ± 3% to the total VOCs and 24 ± 1% to the total OH loss rate. HCHO was not only important in term of abundance, but also important in chemical reactivity in the air.  相似文献   

17.
Formaldehyde (HCHO) concentrations were measured in 116 rain samples in Wilmington, NC from June 1996 to February 1998. Concentrations ranged from below the detection limit of 10 nM, to 13 μM, in the range of HCHO levels reported at other locations worldwide. The volume-weighted annual average rainwater formaldehyde concentration was 3.3±0.3 μM and comprised approximately 3% of the measured dissolved organic carbon. Using the volume weighted average HCHO concentration and annual precipitation of 1.4 m, an annual formaldehyde deposition of 4.6 mmol m−2 yr−1 was determined. Rainwater is a significant source of formaldehyde to surface waters and may contribute as much as 30 times the resident amount found in natural waters of southeastern North Carolina during the summer. Formaldehyde concentrations did not correlate with precipitation volume suggesting continuous supply during rain events. Evidence is presented which indicates part of this supply may be from direct photochemical production in the aqueous phase. Formaldehyde levels exhibited a distinct seasonal oscillation, with higher concentrations during the summer. This pattern is similar to that observed with other rainwater parameters at this site including pH, nitrate, and ammonium, and is most likely the result of increased photochemical production, as well as biogenic and anthropogenic emissions during summer months. The concentration of formaldehyde in both winter El Nino rains and summer tropical rains was less than half its concentration in non-El Nino or non-tropical events, suggesting significant terrestrial input. Formaldehyde was correlated with hydrogen peroxide and non-sea-salt sulfate deposition suggesting a relationship between HCHO, H2O2, S(VI) within the troposphere.  相似文献   

18.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   

19.
This paper explores several aspects of the chemistry of a forested region in north-western Greece, from data collected during the AEROBIC97 campaign. An observationally constrained box model has been constructed to enable comparisons between modelled concentrations of OH and HO2 and those determined by the fluorescence assay by gas expansion (FAGE) technique. These results represent the first comparison of measured and modelled OH concentrations in such an environment. The modelled OH concentrations are, on average,∼50% of those measured (range of 16–61%) over 4 days of model and measurement comparison. Possible reasons for the model-measurement discrepancy are discussed. A rate of production analysis illustrates the dominance of isoprene and the monoterpenes on OH loss, as well as the significance of the ozonolysis of biogenic species as an OH source. The measured and modelled [HO2]/[OH] ratio averaged between 11:00 and 15:00 h is much higher than has been found previously for similar NOx concentrations,∼75 and 340, respectively, cf. 10–20. The high ratio reflects the rapid recycling through the OH–HO2 oxidation chain, involving biogenic species. The high biogenic concentrations result in a midday OH lifetime of∼0.15 s. Finally, for the conditions encountered during the campaign, there is high net photochemical ozone production, peaking at∼20 ppbv h−1 around 09:00 h.  相似文献   

20.
Measurements of OH, H2SO4, and MSA at South Pole (SP) Antarctica were recorded as a part of the 2003 Antarctic Chemistry Investigation (ANTCI 2003). The time period 22 November, 2003–2 January, 2004 provided a unique opportunity to observe atmospheric chemistry at SP under both natural conditions as well as those uniquely defined by a solar eclipse event. Results under natural solar conditions generally confirmed those reported previously in the year 2000. In both years the major chemical driver leading to large scale fluctuations in OH was shifts in the concentration levels of NO. Like in 2000, however, the 2003 observational data were systematically lower than model predictions. This can be interpreted as indicating that the model mechanism is still missing a significant HOx sink reaction(s); or, alternatively, that the OH calibration source may have problems. Still a final possibility could involve the integrity of the OH sampling scheme which involved a fixed building site. As expected, during the peak in the solar eclipse both NO and OH showed large decreases in their respective concentrations. Interestingly, the observational OH profile could only be approximated by the model mechanism upon adding an additional HOx radical source in the form of snow emissions of CH2O and/or H2O2. This would lead one to think that either CH2O and/or H2O2 snow emissions represent a significant HOx radical source under summertime conditions at SP. Observations of H2SO4 and MSA revealed both species to be present at very low concentrations (e.g., 5 × 105 and 1 × 105 molec cm?3, respectively), but similar to those reported in 2000. The first measurements of SO2 at SP demonstrated a close coupling with the oxidation product H2SO4. The observed low concentrations of MSA appear to be counter to the most recent thinking by glacio-chemists who have suggested that the plateau's lower atmosphere should have elevated levels of MSA. We speculate here that the absence of MSA may reflect efficient atmospheric removal mechanisms for this species involving either dynamical and/or chemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号