首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models.The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and −0.4±0.3 μg m−2 h−1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m−2 h−1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (−0.5±1.8 μg m−2 h−1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism.The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.  相似文献   

2.
The emission of isoprene has been studied from a forest of Abies Borisii-regis, a Mediterranean fir species previously thought to emit only monoterpenes. Emission studies from two independent enclosure experiments indicated a standardised isoprene emission rate of (18.4±3.8) μg gdry-weight−1 h−1, similar in magnitude to species such as eucalyptus and oak which are considered to be strong isoprene emitters. Isoprene emission depended strongly on both leaf temperature (2°C–34°C) and photosynthetically active radiation (PAR) below 250 μmol m−2 s−1, becoming saturated with respect to PAR above this value. The annual isoprene emission rate was estimated to be (132±29) kT yr−1 for those trees growing within Greece, comparable to current estimates of the total isoprene budget of Greece as a whole, and contributing significantly to regional ozone and carbon monoxide budgets. Monoterpene emission exhibited exponential temperature dependence, with 1,8-cineole, α-pinene, β-pinene and limonene forming the primary emissions. A standardised total monoterpene emission rate of (2.7±1.1) μg gdry-weight−1 h−1 was calculated, corresponding to an annual monoterpene emission rate of (24±12) kT yr−1. Research was conducted as part of the AEROBIC’97 (AEROsol formation from BIogenic organic Carbon) series of field campaigns.  相似文献   

3.
Eucalypts are among the highest emitters of biogenic volatile organic compounds, yet there is relatively little data available from field studies of this genus. Emissions of isoprene, monoterpenes and the short-chained carbonyls formaldehyde, acetaldehyde and acetone were determined from four species (Eucalyptus camaldulensis, Eucalyptus globulus, Eucalyptus grandis, and Eucalytpus viminalis) in Australia. A smaller comparative study was conducted on E. camaldulensis in south-eastern Australia. Carbonyl emissions, reported here for the first time from eucalypts, were generally comparable with rates reported for other species, with diurnal emissions peaking at about 4, 75 and 34 nmol m?2 min?1 for acetone, formaldehyde and acetaldehyde respectively. There was wide variation in diurnal isoprene and monoterpene emissions between species, but under standard conditions, isoprene emissions were much lower than previous reports. Conversely, standard emission rates of monoterpenes were as much as six times greater than previous reports for some species. Emission of each carbonyl was correlated with its ambient concentration across different species, but more weakly related to temperature. Acetaldehyde emission in particular was significantly correlated with transpiration, but not with sap flow or with ethanol concentrations in xylem sap, suggesting fermentation within the leaf and stomatal conductance are primary controlling processes. Differences in acetaldehyde exchange velocities between sites, in addition to transpiration differences, suggest stomata may indeed exert long term emission regulation, in contrast to compounds for which no biological sink exists.  相似文献   

4.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

5.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

6.
Direct emissions and emission of precursor compounds of acetic and formic acid from higher plants are a significant source of these acids in the atmosphere. To travel from the plant cell to the atmosphere, a gas molecule must first leave the liquid phase and then enter the internal leaf gas phase. The apoplast (cell wall) is the last barrier before the molecule can escape through the stomata. During field experiments we monitored the gas exchange (H2O, CO2, organic acids) of Quercus ilex L. leaves. The exchange rates of acetic and formic acid under field conditions followed a typical diurnal pattern and ranged between −10 (uptake) and 52 (emission) nmol m-2 leaf area min-1 with the maximum around noon. Growth chamber experiments indicate that the emission is related to the stomatal conductance. We discussed the exchange rate of organic acids between the cell wall and the atmosphere in connection with Henry’s law, and the physicochemical conditions in the cell wall. The evaluation showed that for apoplastic pH values between 4 and 5, 26–130% of the measured acetic acid emission based on leaf area could be predicted.  相似文献   

7.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

8.
The present study presents the first detailed inventory for non-methane hydrocarbon emissions from vegetation over Greece. The emission inventory, based on a Geographic Information System (GIS), has a spatial resolution of 5×5 km2 and a time resolution of 1 h. For the area under study, the calculated yearly monoterpene emissions are higher than the corresponding isoprene ones. In addition to the methodology presented here, the CORINAIR methodology was also applied for the calculation of emission rates. This resulted in orders of magnitude differences in the calculated emission rates. The CORINAIR methodology is judged to lead to unrealistically high values of biogenic NMHC emission rates. The temperature dependence of the CORINAIR correction factors seems to affect most the emissions, together with grazing land emission factors.  相似文献   

9.
The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m−2 s−1 PAR), low emitting species (Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g−1 dw h−1, a medium emitter (Pinus pinea) emitted between 5 and 10 μg (C) g−1 dw h−1 and high emitters (Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g−1 dw h−1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.  相似文献   

10.
We measured the soil and leaf CO2 exchange in Quercus ilex and Phillyrea latifolia seasonally throughout the year in a representative site of the Mediterranean region, a natural holm oak forest growing in the Prades Mountains in southeastern Catalonia. In the wet seasons (spring and autumn), we experimentally decreased soil moisture by 30%, by excluding rainfall and water runoff in 12 plots, 1×10 m, and left 12 further plots as controls. Our aim was to predict the response of these gas exchanges to the drought forecasted for the next decades for this region by GCM and ecophysiological models.Annual average soil CO2 exchange rate was 2.27±0.27 μmol CO2 m−2 s−1. Annual average leaf CO2 exchange rates were 8±1 and 5±1 μmol m−2 s−1 in Q. ilex and P. latifolia, respectively. Soil respiration rates in control treatments followed a seasonal pattern similar to photosynthetic activity. They reached maximum values in spring and autumn (2.5–3.8 μmol m−2 s−1 soil CO2 emission rates and 7–15 μmol m−2 s−1 net photosynthetic rates) and minimum values (almost 0 for both variables) in summer, showing that soil moisture was the most important factor driving the soil microbial activity and the photosynthetic activity of plants. In autumn, drought treatment strongly decreased net photosynthesis rates and stomatal conductance of Q. ilex by 44% and 53%, respectively. Soil respiration was also reduced by 43% under drought treatment in the wet seasons. In summer there were larger soil CO2 emissions in drought plots than in control plots, probably driven by autotrophic (roots) metabolism. The results indicate that leaf and soil CO2 exchange may be strongly reduced (by ca. 44%) by the predicted decreases of soil water availability in the next decades. Long-term studies are needed to confirm these predictions or to find out possible acclimation of those processes.  相似文献   

11.
Seasonal patterns of atmospheric mercury (Hg) fluxes measured over vegetated terrestrial systems can provide insight into the underlying process controlling emission and deposition of Hg to vegetated surfaces. Gaseous elemental Hg fluxes were measured for week-long periods in each season (spring, summer, fall, and winter) over an uncontaminated high-elevation wetland meadow in Shenandoah National Park, Virginia using micrometeorological methods. Mean net deposition was observed in the spring (?4.8 ng m?2 h?1), emission in the summer (2.5 ng m?2 h?1), near zero flux in the fall (0.3 ng m?2 h?1), and emission in the winter (4.1 ng m?2 h?1). Nighttime deposition (when stomata are closed) and the poor correlation between Hg fluxes and canopy conductance during periods of active vegetation growth suggest that stomatal processes are not the dominant mechanism for ecosystem-level GEM exchange at this site. The strong springtime deposition relative to summer implies that young vegetation is better at scavenging Hg, with the highest deposition occurring at night possibly via a cuticular pathway. These results suggest that spring is a period of GEM deposition while other seasons exhibit net emission, emphasizing the importance of capturing GEM flux seasonality when determining total Hg budgets.  相似文献   

12.
The cycle of mercury (Hg) from a gigantic landfill area (area ∼2.72 km2) was investigated by conducting micrometeorological measurements of its exchange rates across soil–air boundary during the spring season of 2000. Based on this field campaign, we attempted to provide various insights into the Hg exchange processes, especially with respect to the decoupling of the mixed signatures of complex source processes. According to our analysis, the cycle of Hg in the study site appeared to be affected significantly by the vent processes; excessive amount of Hg was expected to be released via ventpipes penetrating up to 60 m depths of the deep landfilled waste layer. The influence of these vent source processes was reflected very sensitively by the windrose pattern. The data collected during the non-easterly winds were representing the typical pattern for a strong source area in which upward emission is predominant in both strength and frequency. On the other hand, the data collected from the easterly winds were characterized by excessive deposition of Hg which we suspect is due mostly to the nearest vent located easterly from our measurement spot. The unique characteristics of each data group, divided by windrose pattern, were consistent from apparent difference in: (1) the absolute magnitude of gradient/flux data sets, (2) frequency of exchange for each of two vertical directions, and (3) E/D (emission/deposition) ratios for most relevant parameters. The analysis of the short-term variability of exchange patterns over a 24-h scale, also exhibited that the patterns for two different conditions were quite contrasting as a function of time. The magnitude of bidirectional fluxes in the present study is significantly high with values of 254±224 (N=71 emissions out of 79 fluxes quantified during non-easterly winds) and −1164±1276 ng m−2 h−1 (N=14 depositions out of 16 fluxes during easterly winds), respectively. If the computed emission rate is extrapolated, we estimate that annual emission of Hg from the study area can amount to approximately 6 kg which is comparable with the estimates for other areas around the globe under strong Hg-pollution.  相似文献   

13.
Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10–1300 μmol m−2 s−1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33–66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)−1 h−1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)−1 h−1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.  相似文献   

14.
Biogenic VOC emission estimates from the earth's surface are crucial input parameters in air quality models. Knowledge accumulated in the last years about BVOC source distributions and chemical compound species emission profiles in Europe as well as the demand of air quality modellers for a finer resolution in space and time of BVOC estimates have led to the set-up of new emission modelling systems. An updated fast BVOC emission modelling platform explicitly considering the seasonality of emission potentials and leaf temperature gradients in forest canopies by the semi-empirical emission module (seBVOC) will be proposed and used for estimating hourly values of chemical compound-specific emissions in Europe (33–68° north; 10° west to 40° east) in the years 1997, 2000, 2001, and 2003. Spatial resolution will be 10 km by 10 km. The database used contains latest land and forest distributions, updated foliar biomass densities, leaf area indices (LAI), and plant as well as chemical compound-specific emission potentials, if available. Meteorological input parameters for the respective years will be generated using the non-hydrostatic meteorological model MM5. Highest BVOC emissions occur in daytime hours around noon from the end of May to mid-August in the Mediterranean area and from the mid of June to the end of July in the boreal forests. Comparison of 3 BVOC model approaches will reveal that for July 2003, the European isoprene and monoterpene totals range from 1124 Gg to 1446 Gg and from 338 Gg to 1112 Gg, respectively. Small-scale deviations may be as high as ±0.6 Mg km?2 for July 2003, reflecting the current uncertainty range for BVOC estimates. Key sources of errors in inventories are still insufficiently detailed land use data for some areas and lacking chemically speciated plant-specific emission potentials in particular in boreal, south-eastern, and northern African landscapes. The hourly emissions of isoprene, speciated terpenes, and oxyVOC have been made available by the NatAir database.  相似文献   

15.
The status of the current knowledge concerning the dry deposition of atmospheric mercury, including elemental gaseous mercury (Hg0), reactive gaseous mercury (RGM), and particulate mercury (Hgp), is reviewed. The air–surface exchange of Hg0 is commonly bi-directional, with daytime emission and nighttime deposition over non-vegetated surfaces and vegetated surfaces with small leaf area indices under low ambient Hg0 conditions. However, daytime deposition has also been observed, especially when the ambient Hg0 is high. Typical dry deposition velocities (Vd) for Hg0 are in the range of 0.1–0.4 cm s?1 over vegetated surfaces and wetlands, but substantially smaller over non-vegetated surfaces and soils below canopies. Meteorological, biological, and soil conditions, as well as the ambient Hg0 concentrations all play important roles in the diurnal and seasonal variations of Hg0 air–surface exchange processes. Measurements of RGM deposition are limited and are known to have large uncertainties. Nevertheless, all of the measurements suggest that RGM can deposit very quickly onto any type of surface, with its Vd ranging from 0.5 to 6 cm s?1. The very limited data for Hgp suggest that its Vd values are in the range of 0.02–2 cm s?1.A resistance approach is commonly used in mercury transport models to estimate Vd for RGM and Hgp; however, there is a wide range of complexities in the dry deposition scheme of Hg0. Although resistance-approach based dry deposition schemes seem to be able to produce the typical Vd values for RGM and Hg0 over different surface types, more sophisticated air–surface exchange models have been developed to handle the bi-directional exchange processes. Both existing and newly developed dry deposition schemes need further evaluation using field measurements and intercomparisons within different modelling frameworks.  相似文献   

16.
Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina, Central California, and Northern Oregon. Emissions from several sun leaves of each species were measured at or near standard conditions (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m−2 s−1) using environmentally controlled cuvette systems and gas chromatography with reduction gas detectors. Species mean emission capacity ranged from 39 to 158 μg C g−1 h−1 (mean of 86), or 22 to 79 nmol m−2 s−1 (mean of 44). These rates are 2–28 times higher than those previously reported from the same species, which were summarized in a recent study where isoprene emission rates were assigned based on published data and taxonomy. These discrepancies were attributed to differences in leaf environment during development, measurement technique (branch or plant enclosure versus leaf enclosure), and lack of environmental measurements associated with some of the earlier branch enclosure measurements. Mass-based emission capacities for 15 of 18 oak species, sweetgum (Liquidambar styraciflua), and poplars (Populus trichocarpa and P. deltoides) were within ranges used in current biogenic volatile organic compound (BVOC) emission models, while measured rates for the remaining three oak species, Nyssa sylvatica, Platanus occidentalis, Robinia pseudoacacia, Salix nigra, and Populus hybrids (Populus trichocarpa × P. deltoides) were considerably higher. In addition, mean specific leaf mass of the oak species was 30% higher than assumed in current emission models. Emission rates reported here and in other recent studies support recent conclusions that isoprene emission capacities for sun leaves of high emitting species may be better represented by a value of 100±50 μg C g−1 h−1 during hot summer conditions. We also find that intermediate isoprene emission rates previously suggested for some tree species may not represent their true emission capacities, and that broadleaf plant species may have either low (<1.0 μg C g−1 h−1) or very high (∼100 μg C g−1 h−1) genetic capacity to emit isoprene when mature foliage is exposed to a high ambient temperature and light environment.  相似文献   

17.
Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha−1 and 100 Mg ha−1, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution.  相似文献   

18.
Acetone is a ubiquitous component of the atmosphere which, by its photolysis, can play an important role in photochemical reactions in the free troposphere. This paper investigates the biogenic source of acetone from Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in the Scandinavian boreal zone. Branch emission measurements of acetone, monoterpenes, and isoprene were made with an all-Teflon flow-through branch chamber from five specimens of Scots pine at three sites in Sweden and Finland, and from one specimen of Norway spruce at one site in Sweden. Acetone samples were taken with SepPak™ DNPH cartridges, monoterpenes with Tenax TA, and isoprene with 3 l electropolished canisters. Acetone was found to dominate the carbonyl emission of both Scots pine and Norway spruce, as large as the monoterpene emissions and for Norway spruce, as the isoprene emission. The average standard emission rate (30°C) and average β-coefficient for the temperature correlation for 5 specimens of Scots pine were 870 ng C gdw−1 h−1 (gdw=gram dry weight) and 0.12, respectively. For the monoterpenes the values were 900 ng C gdw−1 h−1 and 0.12, respectively. The standard emission rate (30°C) for acetone from Norway spruce was 265 ng C gdw−1 h−1, but the sparsity of data, along with the unusual weather conditions at the time of the measurements, precludes the establishment of a summertime best estimate emission factor.  相似文献   

19.
Saplings of two clones of European white birch (Betula pendula Roth) were exposed to three different ozone profiles resulting in same AOT40 value of 13–14 ppm h in a chamber experiment. The sensitive clone 5 and the more tolerant clone 2 were growing (1) under filtered air (=control), or (2) were exposed to 70 ppb ozone for 24 h d−1 (=profile 1), (3) to 100 ppb ozone for 12 h d−1 at 8:00–20:00 (=profile 2), or (4) to 200 ppb ozone for 4.5 h d−1 at 9:30–14:00 (=profile 3) for 20 d. The saplings were determined for growth, visible leaf injuries, stomatal conductance, and concentrations of Rubisco, chlorophyll and carotenoids. Growth responses and induction of visible foliar injuries under different ozone profiles were variable, resulting in 4–17% lower dry mass of shoot, 16–46% reduction in stem height increment and 11–43% increase in visible injuries in clone 5, which was accompanied by higher leaf turnover rate under profile 3 indicating compensation growth. In clone 2, ozone-induced responses ranged from slight stimulation in stem height growth to 13% decrease in dry mass of shoot and 2–16% increase in visible injuries. Daytime stomatal conductance rates were lowered by 14–54% in clone 5 and 9–74% in clone 2, depending on profile. The additional power-weighted analyses revealed that high peak concentrations and exposure shape were important for induction of visible injuries in both clones and reduction in stomatal conductance in clone 5, whereas growth reductions were rather related to total cumulative exposure. The results indicate that profile of ozone exposure, night-time stomatal conductance (24 h flux), and recovery time for defence and compensations reactions should not be ignored in plant response and ozone flux modelling.  相似文献   

20.
Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular vegetation and mosses. The microcosms represented wet hollows and dry hummocks of a boreal ombrotrophic bog. A water table drawdown treatment was applied to the hollows with naturally high water table. The mean (±SE) isoprene emission from hummocks with intact vegetation, 30 ± 6 μg m?2 h?1, was decreased by over 90% with removal of vascular plants or all vegetation. Thus, our results indicate that vascular plants, in contrast to mosses, were the main source of isoprene in the studied peatland ecosystem. Water table drawdown also significantly decreased the emissions; the mean isoprene emission from hollows with intact vegetation, 45 ± 6 μg m?2 h?1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission. In conclusion, isoprene emissions from peatlands will decrease, but the proportion of assimilated carbon lost as isoprene will increase, if the naturally high water table declines under the changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号