首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human health effects following exposure to ultrafine (<100 nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4 km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm?3 to 5.95 × 106 p cm?3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm?3 to 1.73 × 106 p cm?3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm?3 and 1.55 × 105 p cm?3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.  相似文献   

2.
Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100–500 nm) and PM1 mass concentration, with a maximum total number concentration of 3.8 × 104 cm?3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm?3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM1 exhibited on average above 150 μg m?3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.  相似文献   

3.
Real time number concentrations and size distributions of ultrafine particles (UFPs, diameter <100 nm) and time integrated black carbon, PM2.5 mass, and chemical species were studied at the Los Angeles International Airport (LAX) and a background reference site. At LAX, data were collected at the blast fence (∼140 m from the takeoff position) and five downwind sites up to 600 m from the takeoff runway and upwind of the 405 freeway. Size distributions of UFPs collected at the blast fence site showed very high number concentrations, with the highest numbers found at a particle size of approximately 14 nm. The highest spikes in the time series profile of UFP number concentrations were correlated with individual aircraft takeoff. Measurements indicate a more than 100-fold difference in particle number concentrations between the highest spikes during takeoffs and the lowest concentrations when no takeoff is occurring. Total UFP counts exceeded 107 particles cm−3 during some monitored takeoffs. Time averaged concentrations of PM2.5 mass and two carbonyl compounds, formaldehyde and acrolein, were statistically elevated at the airport site relative to a background reference site. Peaks of 15 nm particles, associated with aircraft takeoffs, that occurred at the blast fence were matched with peaks observed 600 m downwind, with time lags of less than 1 min. The results of this study demonstrate that commercial aircraft at LAX emit large quantities of UFP at the lower end of currently measurable particle size ranges. The observed highly elevated UFP concentrations downwind of LAX associated with aircraft takeoff activities have significant exposure and possible health implications.  相似文献   

4.
In June 1996–June 1997 Berner low-pressure impactors were used at an urban and at a rural site in the Helsinki area for sampling ultrafine particles (UFP, PM0.1). Ten sample pairs, each pair measured simultaneously, were collected in the size range of 0.03–15 μm of particle aerodynamic diameter. More than 40 chemical components were measured. Surprisingly, the average UFP mass concentration was higher at the rural site (520 ng/m3) than at the urban site (490 ng/m3). The average chemical composition of UFP was similar at the two sites. The most abundant of the measured components were sulphate (32 and 40 ng/m3 for the urban and rural sites, respectively), ammonium (22 and 25 ng/m3), nitrate (4 and 11 ng/m3) and the Ca2+ ion (5 and 7 ng/m3). The most important metals at both sites were Ca, Na, Fe, K and Zn with concentrations between 0.7 and 5 ng/m3. Of the heavy metals, Ni, V, Cu, and Pb were important with average ultrafine concentrations between about 0.1 and 0.2 ng/m3. Also the organic anions oxalate (urban 2.1 ng/m3 and rural 1.9 ng/m3) and methanesulphonate (1.3 and 1.7 ng/m3) contributed similarly at both sites. The measured species accounted for only about 15–20% of the total ultrafine mass. The fraction that was not measured includes mainly carbonaceous material and water. It was estimated that the amount of water was about 10% (50 ng/m3) and that of carbonaceous material about 70% (350 ng/m3) at both sites. Aitken modes were observed for most components with the average mass mean mode diameters being between about 0.06 and 0.12 μm. The average concentrations in the Aitken mode differed clearly from those in the UFP for several components.The average contribution of ultrafine mass to the fine particle mass (PM2.5) was about 7% at the urban site and 8.5% at the rural site. At both sites the contribution of ultrafine to fine was especially high for Se, Ag, B, and Ni (10–20%) and at the rural site also for Co (20%), Ca2+ (16%) and Mo (11%). Enrichment in the ultrafine particles suggests that local sources may exist for these elements.Aitken modes turned out to be useful indicators of local sources for several components. The Aitken modes of Ba, Ca, Mg and Sr were similar in several samples, suggesting a common local combustion source for these elements, possibly traffic exhaust. Co, Fe, Mo and Ni formed another group of elements often having similar Aitken modes, the likely source being combustion of heavy fuel oil.  相似文献   

5.
Concentrations of ultrafine (<0.1 μm) particles (UFPs) and PM2.5 (<2.5 μm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm?3 and 22.6 (automobile) to 29.6 (bus) μg m?3, respectively, and a statistically significant difference (p < 0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm?3 and 9.5 (train) to 78.7 (train) μg m?3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.  相似文献   

6.
Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children’s exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children’s exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM2.5, PM10, black carbon (BC), CO, and CO2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 103 to 3.4 × 104 particles cm?3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses’ self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.  相似文献   

7.
A new setup has been developed and built to measure number size distributions of exhaust particles and thermodynamic parameters under real traffic conditions. Measurements have been performed using a diesel and a gasoline passenger car driving with different speeds and engine conditions. Significant number of nucleation mode particles was found only during high load conditions, i.e. high car and engine speeds behind the diesel car. The number concentration of soot mode particles varied within a factor of two for different engine conditions while the concentration of nucleation mode particles varied up to two orders of magnitude. The results show that roadside measurements are still quite different from those behind the tailpipe. Beside dilution transformation processes within the first meter behind the tailpipe also play an important role, such as nucleation and growth. Emission factors were calculated and compared with those obtained by other studies. Emission factors for particles larger than 25 nm (primary emissions) varied within 1.1 × 1014 km?1 and 2.7 × 1014 km?1 for the diesel car and between 0.6 × 1012 km?1 and 3.5 × 1012 km?1 for the gasoline car. The advantage of these measurements is the exhaust dilution under atmospheric conditions and the size-resolved measurement technique to divide into primary emitted and secondary formed particles.  相似文献   

8.
We have observed a wide area of air pollutant impact downwind of a freeway during pre-sunrise hours in both winter and summer seasons. In contrast, previous studies have shown much sharper air pollutant gradients downwind of freeways, with levels above background concentrations extending only 300 m downwind of roadways during the day and up to 500 m at night. In this study, real-time air pollutant concentrations were measured along a 3600 m transect normal to an elevated freeway 1–2 h before sunrise using an electric vehicle mobile platform equipped with fast-response instruments. In winter pre-sunrise hours, the peak ultrafine particle (UFP) concentration (~95 000 cm?3) occurred immediately downwind of the freeway. However, downwind UFP concentrations as high as ~40 000 cm?3 extended at least 1200 m from the freeway, and did not reach background levels (~15 000 cm?3) until a distance of about 2600 m. UFP concentrations were also elevated over background levels up to 600 m upwind of the freeway. Other pollutants, such as NO and particle-bound polycyclic aromatic hydrocarbons, exhibited similar long-distance downwind concentration gradients. In contrast, air pollutant concentrations measured on the same route after sunrise, in the morning and afternoon, exhibited the typical daytime downwind decrease to background levels within ~300 m as found in earlier studies. Although pre-sunrise traffic volumes on the freeway were much lower than daytime congestion peaks, downwind UFP concentrations were significantly higher during pre-sunrise hours than during the daytime. UFP and NO concentrations were also strongly correlated with traffic counts on the freeway. We associate these elevated pre-sunrise concentrations over a wide area with a nocturnal surface temperature inversion, low wind speeds, and high relative humidity. Observation of such wide air pollutant impact area downwind of a major roadway prior to sunrise has important exposure assessment implications since it demonstrates extensive roadway impacts on residential areas during pre-sunrise hours, when most people are at home.  相似文献   

9.
The measured physical size distributions of sub-micron particles during cold season at Pune, India are analyzed to explore the characteristics of nucleation and growth properties. Preliminary analysis of aerosol size distribution in time-series shows large increase in number concentration due to nucleation events between 0800 h and 1030 h at this location. The observable quantities such as condensable vapor concentration (C), its source rate (Q), growth rate (GR) and condensable sink (CS) are estimated from the time-series evolutions of aerosol size distributions. The concentration of vapor and its source rate were about 19.8 ± 2.15 × 107 molecules cm?3 and 1.28 ± 0.084 × 107 cm?3 s?1 respectively. The average condensation sink and growth rate were 7.1 ± 0.4 × 10?2 s?1 and 16.95 ± 1.86 nm h?1 respectively during the growth period. The values are high enough to trigger the nucleation bursts and enhance subsequent growth rates of nucleation mode particles at this location. The magnitudes are in the range of those observed at New Delhi, India and much higher than those of European cities. The ratio of apparent to real nucleation rate is found to be a measure of number concentration of freshly produced particles by photo-chemical nucleation. The predicted number concentrations corresponding to measured distributions of mid-point diameter increases with the size for both 1 nm nucleated clusters and 3 nm particles. The database of all the possible event days and the event characteristics forms the basis for future works into the causes and implications of atmospheric particle formation at this location.  相似文献   

10.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

11.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

12.
Traffic-related aerosol particles are ubiquitous in the urban atmosphere. As they are produced at ground level, they can also cause adverse health effects to urban dwellers. However, knowledge of the formation, transformation and chemically resolved size distribution of urban ultrafine particles is incomplete. Thus, more of these measurements are needed for better assessment of ambient air quality and its potential health effects. The particle number concentration, aerosol black carbon (BC) concentration and size distribution of traffic-related aerosols were measured near two major roads in Kuopio, Finland, from 16 June to 5 July, 2004. Furthermore, the properties of roadside aerosol particles were examined with the Tandem Differential Mobility Analyzer technique (TDMA). A suite of TDMA instruments relying on water (hygroscopic TDMA) and ethanol (organic TDMA) condensation as well as heating (volatility TDMA) were deployed to study the composition of the nucleation and Aitken mode particles (Dp = 10–50 nm) formed from vehicle exhaust. The results show that a simple three-component model was able to reproduce characteristic insoluble, organic and water-soluble volume fractions. Insoluble constituents were dominant in the Aitken mode particles, whereas organic compounds dominated the nucleation mode sizes. On average, only a small volume fraction was water-soluble, but a clear external mixing was observed particularly when enough time was allowed after the tail pipe emissions. The contribution of the insoluble material was seen to increase as a function of particle size, being typically less than 10% at 10 nm and between 20 and 50% at 50 nm, in contrast to the organic fraction, which decreased from about 80% at nucleation mode size range to 50–60% at 50 nm.  相似文献   

13.
Ultrafine particles (UFP, diameter < 100 nm), as reported in recent findings of toxicological and epidemiological studies, could represent health and environmental risks. Motor vehicle emissions usually constitute the most significant source of UFP in an urban environment. Number, surface and mass concentration of particles were determined at increasing distances from the most important Italian road: the “Autostrada del Sole” A1 highway. Particles in the size range from 0.0059 to 20 μm were measured with a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS) spectrometers.The A1 highway was selected because it is characterized by two different traffic conditions: a daily and a weekly traffic. During the weekdays the average traffic flow was about 50 vehicles min?1 with more than 30% of vehicles being heavy-duty (HD) diesel trucks. The weekly traffic component is characterized by an increased traffic up to approximately 100 vehicles min?1 during Monday mornings and Friday afternoons because of light-duty vehicles, with substantial reduction of the percentage of HD diesel trucks (typically only 10%).The purpose of this study is the characterization of the A1 highway in terms of evolution of particle size distribution (PSD) and total number concentration at different distances from the highway. This analysis is interesting because Italian traffic presents a higher i) percentage of diesel light-duty vehicles and ii) mean traffic speed in respect to US and Australian traffics. Particle number, surface and mass, exponentially decreases as one moves away from the freeway, whereas UFP number concentration measured at 400 m downwind from the freeway is indistinguishable from upwind background concentration.  相似文献   

14.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

15.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

16.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

17.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

18.
Traffic is the major source of submicrometre particles in an urban environment but the spatial distribution of particles around an urban site has not been measured. The aim of this paper was to investigate the relationship of CO and particles at a busy central urban location surrounded by buildings. This study measured the concentration and size distribution of submicrometre particles at a fixed location and concentrations of submicrometre particles and CO at 10 locations around a square site in the Brisbane Central Business District (CBD). Changes in concentration were assessed as a function of traffic volume and wind direction and speed.Fixed site measurements of submicrometre particle number concentration varied between 7.9×102 (±40) and 2.6×105 (±1.3×104) cm−3 and showed a strong positive correlation with traffic flow rate, confirming that vehicles were the major source of urban submicrometre particles. The particle concentration decreased exponentially with increasing wind speed.Average particle concentrations around the site ranged between 19.7×103 (±8.2×103) and 32.5×103 (±16.6×103) cm−3. Analysis of the particle measurements around the site showed that time and location both had a statistically significant effect on mean particle concentration around the square over the period of the study.Around the site, CO concentration was relatively constant (within instrument error), ranging between 2.2 (±1.9) and 4.5 (±3.0) ppm. Again both time and location had a statistically significant effect on CO concentration during the measurement period. However, CO concentration was not significantly correlated to particle number concentration around the site and examination of between-site comparisons with the two pollutants showing different spatial and temporal trends.The significant difference in the concentration trends between the locations around the square indicates that there is considerable inhomogeneity in the particle concentration around the site. One implication of this is that careful thought must be given to locations of air intakes of air-conditioning systems in urban environments.  相似文献   

19.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

20.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号