首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial emission of ammonia (NH3) from animal houses and the related high local deposition of NH3-N are a threat to semi-natural nitrogen-deficient ecosystems situated near the NH3 source. In Denmark, there are regulations limiting the level of NH3 emission from livestock houses near N-deficient ecosystems that are likely to change due to nitrogen (N) enrichment caused by NH3 deposition. The models used for assessing NH3 emission from livestock production, therefore, need to be precise, as the regulation will affect both the nature of the ecosystem and the economy of the farmer. Therefore a study was carried out with the objective of validating the Danish model used to monitor NH3 transport, dispersion and deposition from and in the neighbourhood of a chicken farm. In the study we measured NH3 emission with standard flux measuring methods, NH3 concentrations at increasing distances from the chicken houses using passive diffusion samplers and deposition using 15N-enriched biomonitors and field plot studies. The dispersion and deposition of NH3 were modelled using the Danish OML-DEP model. It was also shown that model calculations clearly reflect the measured NH3 concentration and N deposition. Deposition of N measured by biomonitors clearly reflected the variation in NH3 concentrations and showed that deposition was not significantly different from zero (P < 0.05) at distances greater than 150–200 m from these chicken houses. Calculations confirmed this, as calculated N deposition 320 m away from the chicken farm was only marginally affected by the NH3 emission from the farm. There was agreement between calculated and measured deposition showing that the model gives true estimates of the deposition in the neighbourhood of a livestock house emitting NH3.  相似文献   

2.
We present measurements of ammonia (NH3) over a deciduous forest in southern Indiana collected during four field campaigns; two in the spring during the transition to leaf-out and two during the winter. Above canopy NH3 concentrations measured continuously using two Wet Effluent Diffusion Denuders indicate mean concentrations of 0.6–1.2 μg m−3 during the spring and 0.3 μg m−3 during the winter. Measurements suggest that on average the forest act as a sink of NH3, with a representative daily deposition flux of 1.8 mg-NH3 m−2 during the spring. However, on some days during the spring inverted concentration gradients of NH3 were observed resulting in an apparent upward flux of nearly 0.2 mg-NH3 m−2 h−1. Analyses suggest that this apparent emission flux may be due to canopy emission but evaporation of ammonium nitrate particles may also be partly responsible for the observed inverted concentration gradients.  相似文献   

3.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

4.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

5.
Part II presents a comprehensive evaluation of CMAQ for August of 2002 on twenty-one sensitivity simulations (detailed in Part I) in MM5 to investigate the model performance for O3 SIPs (State Implementation Plans) in the complex terrain. CMAQ performance was quite consistent with the results of MM5, meaning that accurate meteorological fields predicted in MM5 as an input resulted in good model performance of CMAQ. In this study, PBL scheme plays a more important role than its land surface models (LSMs) for the model performance of CMAQ. Our results have shown that the outputs of CMAQ on eighteen sensitivity simulations using two different nudging coefficients for winds (2.5 and 4.5 × 10?4 s?1, respectively) tend to under predict daily maximum 8-h ozone concentrations at valley areas except the TKE PBL sensitivity simulations (ETA M-Y PBL scheme with Noah LSMs and 5-layer soil model and Gayno-Seaman PBL) using 6.0 × 10?4 s?1 with positive MB (Mean Bias). At mountain areas, none of the sensitivity simulations has presented over predictions for 8-h O3, due to relatively poor meteorological model performance. When comparing 12-km and 4-km grid resolutions for the PX simulation in CMAQ statistics analysis, the CMAQ results at 12-km grid resolution consistently show under predictions of 8-h O3 at both of valley and mountain areas and particularly, it shows relatively poor model performance with a 15.1% of NMB (Normalized Mean Bias). Based on our sensitivity simulations, the TKE PBL sensitivity simulations using a maximum value (6 × 10?4) among other sensitivity simulations yielded better model performance of CMAQ at all areas in the complex terrain. As a result, the sensitivity of RRFs to the PBL scheme may be considerably significant with about 1–3 ppb in difference in determining whether the attainment test is passed or failed. Furthermore, we found that the result of CMAQ model performance depending on meteorological variations is affected on estimating RRFs for attainment demonstration, indicating that it is necessary to improve model performance. Overall, G_c (Gayo-Seaman PBL scheme) using the coefficient for winds, 6 × 10?4 s?1, sensitivity simulation predicts daily maximum 8-h ozone concentration closer to observations during a typical summer period from May to September and provides generally low future design values (DVFs) at valley and mountain areas compared to other simulations.  相似文献   

6.
Abstract

The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29–July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb.

Both models predict similar amounts of sulfate (SO4 2?) and organic matter, and both predict SO4 2? to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4 +), nitrate (NO3 ?), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3 ?,NH4 +, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37–43% and –33–4% for CMAQ and 50–59% and 7–30% for PMCAMx. Both models predict the largest MNGEs for NO3 ? (98–104% for CMAQ, 138–338% for PMCAMx). The inaccurate NO3 ? predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

7.
Abstract

There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy. A protocol using flux chambers (FCs) was used to determine these NH3 emissions from the open-lot dairy. NH3 concentration measurements were made using chemiluminescence-based analyzers. The ground-level area sources (GLAS) including open lots (cows on earthen corrals), separated solids, primary and secondary lagoons, and milking parlors were sampled to estimate NH3 emissions. The seasonal NH3 EFs were 11.6 ± 7.1 kg-NH3 yr-1head-1 for the summer and 6.2 ± 3.7 kg-NH3 yr-1head-1 for the winter season. The estimated annual NH3 EF was 9.4 ± 5.7 kg-NH3 yr-1head-1 for this open-lot dairy. The estimated NH3 EF for winter was nearly 47% lower than summer EF. Primary and secondary lagoons (~37) and open-lot corrals (~63%) in summer, and open-lot corrals (~95%) in winter were the highest contributors to NH3 emissions for the open-lot dairy. These EF estimates using the FC protocol and real-time analyzer were lower than many previously reported EFs estimated based on nitrogen mass balance and nitrogen content in manure. The difference between the overall emissions from each season was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH3 emission from the open-lot earthen corrals due to variable animal density within feeding and shaded and dry divisions of the open lot. This spatial variability was attributed to dispirit manure loading within these areas.  相似文献   

8.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

9.
10.
This study investigated if atmospheric ammonia (NH3) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 μg/m3 (at a sheep farm), ca. 15 μg/m3 (60 m from the sheep farm) and ca. 2 μg/m3 (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH3 is susceptible to this pollutant in the gas-phase. The parameter PIABS, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH3 than the FV/FM ratio, one of the most commonly used stress indicators.  相似文献   

11.
There is a lack of information on ammonia (NH3) emissions from cattle housing systems in Mediterranean countries, with most published data deriving from NW Europe. An investigation was carried out in NW Portugal to quantify NH3 emissions for the main types of dairy cattle buildings in Portugal, i.e. naturally ventilated buildings and outdoor concrete yards, and to derive robust emission factors (EFs) for these conditions and compare with EFs used elsewhere in Europe. Measurements were made throughout a 12-month period using the passive flux sampling method in the livestock buildings and the equilibrium concentration technique in outdoor yards.The mean NH3 emission factor for the whole housing system (buildings + outdoor yards) was 43.7 g NH3–N LU?1 day?1 and for outdoor concrete yards used by dairy cattle was 26.6 g NH3–N LU?1 day?1. Expressing NH3 emission in terms of the quantity of liquid milk produced gave similar values across the three dairy farms studied (with a mean of 2.3 kg N ton-milk?1 produced) and may have advantages when comparing different farming systems. In dairy houses with outdoor yards, NH3 emissions from the yard area contributed to 69–92% of total emissions from this housing system. Emissions were particularly important during spring and summer seasons from outdoor yards with NH3 emitted in this period accounting for about 72% of annual emissions from outdoor yards. Mean NH3 emission factors derived for this freestall housing system and outdoor concrete yards used by dairy cattle in Portugal were higher than those measured in northern Europe. In addition, values of animal N excretion estimated in this study were greater than official National standard values. If these emissions are typical for Portuguese dairy systems, then the current National inventory underestimates emissions from this source in NW of Portugal, because of the use of lower standard values of N excretion by dairy cattle.  相似文献   

12.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

13.
An agricultural ammonia (NH3) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 × 5 km2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH3-N yr−1 for the NCP, accounting for 27% of the total emissions in China. NH3 emission from mineral fertilizer application contributed 1620 kt NH3-N yr−1, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH3 emissions map was developed based on 1 × 1 km land use database and aggregated to a 5 × 5 km grid resolution. The highest emission density value was 198 kg N ha−1 yr−1.  相似文献   

14.
Currently, legislation is being considered to reduce NH3 emissions in the UK. The major sources of NH3 and their relative contributions are well known, however, the processes that control the rates of emission are still poorly defined. A series of wind-tunnel experiments has been carried out to determine the effects of various management practices on NH3 losses. The tunnels were modified to enable NH3 emission and subsequent deposition to the adjacent swards in the field to be measured. The wind-tunnels were used to examine the effects of herbage length, cutting and N status on rates of NH3 fluxes, which together with the prevailing environmental conditions affected the rates of NH3 emission and deposition. Results showed that between 20 and 60% of the NH3 emitted was deposited within 2 m. Compensation points of between 1.0 and 2.3 μg m−3 were calculated for the grass sward.  相似文献   

15.
Simultaneous measurements of ammonia and nitric acid in ambient air were conducted at Dayalbagh, Agra using the mist chamber technique. The sampling site is located near a cattle shed. A total of 120 samples were collected during the period July–September and November–February (1997–1998). Sampling was performed during six different times a day. Gas-phase HNO3 was estimated as NO3 using ion chromatographic technique while ammonia was determined colorimetrically as NH4+ using indophenol blue method. The mean levels of NH3 and HNO3 for the entire data set were 16.3±2.8 and 1.6±1.4 ppbv, respectively. In the monsoon, mean values for NH3 and HNO3 averaged to 16.4±3.5 and 0.9±0.7 ppbv while the winter means were 11.8±4.4 and 2.1±1.2 ppbv, respectively. Concentration of both the species (NH3 and HNO3) did not show any significant diurnal behaviour in both the seasons. However, concentration of both NH3 and HNO3 were lower at dawn than the previous night's value. This has been ascribed to their removal through dew. Concentrations of HNO3 are observed to increase during the daytime, consistent with its formation by photochemical reactions. Nitric acid and ammonia concentrations show a significant seasonal variation. Levels of HNO3 are higher in winter but lower in monsoon, while ammonia shows a reverse trend with higher monsoon and lower winter values. Observed trends in nitric acid and ammonia concentration are due to seasonal variation in emission sources, chemistry and meteorology. Gaseous ammonia and nitric acid are in equilibrium with NH4NO3 (solid or aqueous) in the atmosphere. The existence of this equilibrium was examined from simultaneous measurements of NH3 and HNO3 in the ambient air. It is found that for the monsoon data, measured concentrations are qualitatively below the predicted equilibrium value, while in the winter, concentration product ([NH3] [HNO3]) lies consistently above the predicted values. These deviations may be explained due to local sources of both [NH3] and [HNO3], presence of coarse nitrate particles and low-temperature and high-humidity conditions.  相似文献   

16.
Improved measurements of ammonia losses from cattle feedlots are needed to quantify the national NH3 emissions inventory and evaluate management techniques for reducing emissions. Speciation cartridges composed of glass honeycomb denuders and filter packs were adapted to measure gaseous NH3 and aerosol NH4+ fluxes using relaxed eddy accumulation (REA). Laboratory testing showed that a cartridge equipped with four honeycomb denuders had a total capture capacity of 1800 μg of NH3. In the field, a pair of cartridges was deployed adjacent to a sonic anemometer and an open-path gas analyzer on a mobile tower. High-speed valves were attached to the inlets of the cartridges and controlled by a datalogger so that up- and down-moving eddies were independently sampled based on direction of the vertical wind speed and a user-defined deadband. Air flowed continuously through the cartridges even when not sampling by means of a recirculating air handling system. Eddy covariance measurement of CO2 and H2O, as measured by the sonic and open-path gas analyzer, were used to determine the relaxation factor needed to compute REA-based fluxes. The REA system was field tested at the Beef Research Unit at Kansas State University in the summer and fall of 2007. Daytime NH3 emissions ranged between 68 and 127 μg m?2 s?1; fluxes tended to follow a diurnal pattern correlated with latent heat flux. Daily fluxes of NH3 were between 2.5 and 4.7 g m?2 d?1 and on average represented 38% of fed nitrogen. Aerosol NH4+ fluxes were negligible compared with NH3 emissions. An REA system designed around the high-capacity speciation cartridges can be used to measure NH3 fluxes from cattle feedlots and other strong sources. The system could be adapted to measure fluxes of other gases and aerosols.  相似文献   

17.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

18.
In Canada approximately 45% of ammonia (NH3) emissions are attributed to dairy and beef cattle industries. The present study focused on NH3 emissions from a beef feedlot with a one-time capacity of 17,220 head. The aim was to improve the Canadian NH3 emission inventories and air quality forecasting capabilities. A Cessna 207, equipped with a fast-response NH3/NOy detector and a quadrupole aerosol mass spectrometer, was flown in a grid pattern covering an area of 8 × 8 km centered on a feedlot (800 × 800 m) at altitudes ranging from 30 to 300 m above ground. Stationary ground measurements of NH3 concentration and turbulence parameters were made downwind of the feedlot. Three flights were conducted under varying meteorological conditions, ranging from very calm to windy with near-neutral stratification. NH3 mixing ratios up to 100 ppbv were recorded on the calm day, up to 300 m above ground. An average feedlot NH3 emission rate of 76 ± 4 μg m?2 s?1 (equivalent to 10.2 g head?1 h?1) was estimated. Characteristics of the measured NH3 plume were compared to those predicted by a Lagrangian dispersion model. The spatially integrated pattern of NH3 concentrations predicted and measured agreed but the measured was often more complex than the predicted spatial distribution. The study suggests that the export of NH3 through advection accounted for about 90% of the emissions from the feedlot, chemical transformation was insignificant, and dry deposition accounted for the remaining 10%.  相似文献   

19.
According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH3–N m−2 day−1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH3 concentration in the boundary layer and wind speed. The NH3 in the boundary layer was in equilibrium with NH3 in soil solution. Gross NH3 volatilization was in the range 0.07–2.1 kg NH3–N ha−1 day−1 from a pasture with 24 sows ha−1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1–2 days before measurements. Annual ammonia loss was 4.8 kg NH3–N sow−1.  相似文献   

20.
The stomatal ammonia compensation point for ammonia (NH3) of an intensively managed pasture of rye grass (Lolium perenne L.) was followed from mid January till November 2000. Leaf samples were taken every week. Simultaneously, the ambient NH3 concentration was measured. Meteorological data (temperature, wind speed, rainfall and radiance) were collected from a nearby field station. The vacuum infiltration technique was used to isolate the apoplastic solution of the leaves. From the determined ammonium (NH4+) concentration and pH in the apoplast, the gaseous NH3 concentration inside the leaves was calculated, i.e. the so-called stomatal compensation point (χs).Temperature appeared to have a predominant effect on χs, partly by affecting the equilibrium between gaseous NH3 inside the leaf and NH3 dissolved in the apoplast and partly by affecting physiological processes influencing the NH4+ concentration in the apoplast. Results of the present study suggest that these temperature effects were counteracting. On one hand temperature increase during early spring stimulated NH3 volatilisation from the apoplast, on the other hand it led to a decline in apoplastic NH4+ from 0.9 to 0.2 mM, thereby diminishing the emission potential of the leaf. The low NH4+ concentrations during spring and summer coincided with a low total leaf N content (<3% dw). However, there was no clear relationship between these two variables. The total N content of the leaf tissue is therefore an inadequate parameter for prediction of the potential NH3 emission from rye grass leaves. No annual trend was found for the apoplast pH. With a few exceptions, pH varied between 5.9 and 6.5 throughout the experimental period.The calculated values for χs varied between 0.5 and 4 μg m−3. The gaseous NH3 concentrations inside the grass leaves were, with a few exceptions, always smaller than the measured ambient NH3 concentrations. The present study indicates that under the current ambient NH3 concentrations in the Netherlands, the grass canopy is unlikely to be a major source of NH3 emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号