首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
For continuous monitoring of atmospheric visibility in the city of Kwangju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwangju, Korea. At the transmitter site a nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. Unusually high number of Yellow Sand events had occurred in the Northeast Asia during the spring of 2000. Visibility in Kwangju under such conditions was greatly impaired over large area for a few days. In order to investigate the effects of Yellow Sand on visibility impairment, chemical and elemental analyses of aerosol samples were performed along with the optical measurement of visibility. Hourly averaged visual range decreased from 61.7 to 1.9 km when hourly averaged concentration of PM10 varied from 32.9 to 601.8 μg/m3 during Yellow Sand periods. Fine particulate (<2.5 μm) concentrations were relatively lower than coarse particulate matters. Results of the data analyses show that mineral dusts originated from continental sources were simultaneously transported along with anthropogenic sulfate aerosols and marine aerosols. Total light extinction coefficient, bext, proposed by the IMPROVE network showed poor correlation with bext measured by transmissometer. Coarse mass scattering efficiency was classified into three categories; ENHSOc, Emineral, and Esea-salt, which were determined as ammonium sulfate combined with nss-sulfate of 1.0, sea-salt of 0.4, and mineral of 0.77 m2/g, respectively. Mass fraction of NHSOc, sea-salt, and mineral dust was 0.20, 0.14, and 0.66, respectively.  相似文献   

2.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) protocols for reconstructing the ambient light extinction coefficient (bext) from measured aerosol species are the basis for evaluating compliance under the Regional Haze Rule. Aerosol mass composition and optical properties have been measured as part of the IMPROVE program since 1988, providing a long-term data set of aerosol properties at 38 sites around the US. This data set is used to evaluate assumptions made in calculating reconstructed mass and bext by applying statistical analysis techniques. In particular, the molecular weight to carbon weight ratio used to compute particulate organic matter is investigated. An annual average value of 1.7±0.2 for the IMPROVE sites, compared to the value of 1.4 currently assumed in the IMPROVE algorithm, is derived. Regression analysis also indicates that fine soil mass concentrations are underestimated by roughly 20% on average. Finally, aerosol mass scattering and extinction efficiencies assumed in the IMPROVE reconstructed bext protocol are examined. Fine mode (Dp<2.5 μm) mass scattering efficiencies have a functional dependence on mass concentrations at many sites, and use of a mass-concentration-dependent adjustment factor to refine the assumed efficiencies provides for closer agreement between measured and reconstructed bext.  相似文献   

3.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

4.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

5.
The condensation properties of polydisperse aged ultrafine carbon aerosols (particle diameter<1 μm) have been investigated by means of a variable supersaturation condensation nucleus counter. The critical supersaturation (Sc), as the point, where 50% of all particles have been activated and grew to droplets was compared to the median dry particle diameter for pure carbon aerosols, benzo[a]pyrene-tagged carbon aerosols and external mixtures of the carbon particles with sodium chloride and sulphuric acid aerosols. Additionally, ozone as oxidising gaseous compound was added in some of the experiments. Simple coagulation of pure and benzo[a]pyrene-tagged carbon particles resulted in only slightly lower values for Sc due to the increased median particle diameter. The formation of soluble functionalities on the particle surface, i.e. the coagulation with the soluble sodium chloride and sulphuric acid aerosols or the chemical decomposition of benzo[a]pyrene into polar, hydrophilic products due to the reaction with ozone resulted in significant lower values for Sc for the modified carbon aerosol. The necessary supersaturations for the increased hydrophilic particles dropped to atmospherically relevant values of 3% after 5 h reaction time (benzo[a]pyrene decomposition) and 15 h (coagulation with soluble particles), respectively.  相似文献   

6.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

7.
The atmosphere of Kathmandu Valley has been investigated by using Sunphotometer and Nephelometer during the pre-monsoon period of 1999. The atmospheric turbidity parameters (extinction coefficient for 500 nm wavelength τAG and Angstrom coefficient β) are found high in the morning and show decreasing trends from morning to late afternoon on average. Vertical dispersion of pollutants and increasing pollutant flushing rate by increasing wind speed from morning to late afternoon is the cause for this decreasing trend of turbidity over the valley. Being surrounded by high hills all around the valley, horizontal exit of pollutants without vertical dispersion is not possible. The scattering coefficient bscat of aerosols in ground level troposphere is also found high in the morning, which decreases and becomes minimum during afternoon. During late afternoon, bscat again shows a slightly increasing trend. The reason is the increasing vehicular emission during late afternoon rush period. The average values of Angstrom exponent α, β, τAG and bscat are found to be 0.624±0.023, 0.299±0.009, 0.602±0.022 and 0.353±0.014 km−1, respectively. About 76.8% of the observed values of β lie above 0.2 indicating heavy particulate pollution in the valley. A comparison of observed values of turbidity parameters with other major cities of the world shows that Kathmandu is as polluted as cities like Jakarta, Kansas, Beijing, Vienna, etc.  相似文献   

8.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

9.
《Chemosphere》2009,74(11):1793-1798
A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM–EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO3) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08‰ < δ56Fe < +0.80‰) of enriched ores processed by the manufacturer (−0.16‰ < δ56Fe < +1.19‰). No significant evolution of Fe fractionation during steelworks processes is observed. At the industrial source, Fe is mainly present as oxide particles, to some extent in 3–4 μm aggregates. In the close urban area, 5 km away from the steel plant, individual particle analysis of collected aerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (δ56Fe = 0.14 ± 0.11‰) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols.  相似文献   

10.
11.
A laser induced fluorescence (LIF) instrument has been developed to measure tropospheric NO2 with low detection limit. The instrument design, development and first measurements are reported. There are also details of the temporal gate system built for the fluorescence acquisition. The instrument is able to make fast measurements (up to 4 Hz) and shows a limit of detection of 10 pptv/60 s. Continuous observations (2 weeks in summer 2007) in a small town in central Italy were used to test the performance of the instrument and to study the photochemistry of ozone in a background site. LIF and a commercial chemiluminescence (CL) instrument simultaneous observations of NO2 show a good linearity (LIF = 1.02 CL + 0.6 (ppb), R2 = 0.98) but there is a bias of the commercial instrument of about 0.60 ppbv on average. The overestimation of the CL system is probably due to conversion of NOy species into NO by the molybdenum converter used in the CL instrument to detect NO2. Analysis of 1 s data is used to test the instrument response and the coupling between nitrogen oxides and ozone.  相似文献   

12.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

13.
During the course of one year (March 2004–March 2005), PM2.5 particulate nitrate concentrations were semi-continuously measured every 10 min at a Madrid suburban site using the Rupprecht and Patashnick Series 8400N Ambient Particulate Nitrate Monitor (8400N). Gaseous pollutants (NO, NO2, O3, HCHO, HNO2) were simultaneously measured with a DOAS spectrometer (OPSIS AR-500) and complementary meteorological information was obtained by a permanent tower. The particulate nitrate concentrations ranged from the instrumental detection limit of around 0.2 μg m−3, up to a maximum of about 25 μg m−3. The minimum monthly average was reached during August (0.32 μg m−3) and the maximum during November (3.0 μg m−3). Due to the semi-volatile nature of ammonium nitrate, peaks were hardly present during summer air pollution episodes. A typical pattern during days with low dispersive conditions was characterized by a steep rise of particulate nitrate in the morning, reaching maximum values between 9 and 14 UTC, followed by a decrease during the evening. On some occasions a light increase was observed at nighttime. During spring episodes, brief diurnal nitrate peaks were recorded, while during the autumn and winter episodes, later and broader nitrate peaks were registered. Analysis of particulate nitrate and related gaseous species indicated the photo-chemical origin of the morning maxima, delayed with respect to NO and closely associated with secondary NO2 maximum values. The reverse evolution of nitrate and nitrous acid was observed after sunrise, suggesting a major contribution from HNO2 photolysis to OH formation at this time of the day, which would rapidly produce nitrate in both gaseous and particulate phase. Some nocturnal nitrate maxima appeared under high humidity conditions, and a discussion about their origin involving different possible mechanisms is presented, i.e. the possibility that these nocturnal maximum values could be related to the heterogeneous formation of nitrous and nitric acid by the hydrolysis of NO2 on wet aerosols.  相似文献   

14.
Fifty-five seasonal PM2.5 samples were collected March 2003–January 2004 at Changdao, a resort island located at the demarcation line between Bohai Sea and Yellow Sea in Northern China. Changdao is in the transport path of the continental aerosols heading toward the Pacific Ocean in winter and spring due to the East Asia Monsoon. Solvent-extractable organic compounds (SEOC), organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) were analyzed for source identification based on molecular markers. This data set provides useful information for the downstream site researchers of the Asian continental outflow. Total carbon (TC, OC+EC) was ∼18 μg m−3 in winter, ∼9 μg m−3 in spring and autumn and a large part of the TC was WSOC (33% in winter, >45% in the other seasons). Winter and spring were the high SEOC seasons with n-fatty acids the highest at ∼290 and ∼170 ng m−3, respectively, followed by n-alkanes at ∼210 and ∼90 ng m−3, and polycyclic aromatic hydrocarbons (PAHs) were also at high at ∼120 and ∼30 ng m−3. High WSOC/TC, low C18:1/C18 of fatty acids, and low concentrations of labile PAHs such as benzo(a)pyrene, together with back trajectory analysis suggested that the aerosols were aged and transported. PAHs, triterpane and sterane distributions provided evidence that coal burning was the main source of the continental outflow. The detection of levoglucosan and β-sitosterol in nearly all the samples showed the impact of biomass burning.  相似文献   

15.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was conducted in Big Bend National Park in 1999. The park is located in a remote region of southwest Texas but has some of the poorest visibility of any Class 1 monitored area in the western US. The park is frequently influenced by air masses carrying emissions from Mexico and eastern Texas. Continuous physical, optical and chemical aerosol measurements were performed in an effort to understand the sources of and contributions to haze in the park. As part of this characterization, dry aerosol size distributions were measured over the size range of 0.05<Dp<20 μm. Three instruments with different measurement techniques were used to cover this range. Complete size distributions were obtained from all of the instruments in terms of a common measure of geometric size using a new technique. Size parameters for accumulation and coarse particle modes were computed and demonstrate periods when coarse mode volume concentrations were significant, especially during suspected Saharan dust episodes in July and August. Study average (and one standard deviation) geometric volume mean diameters for the accumulation and coarse particle modes were 0.26±0.04 and 3.4±0.8 μm, respectively. Dry light scattering coefficients (bsp) were computed using measured size distributions and demonstrated periods when contributions to bsp from coarse particles were significant. The study average computed bsp was 0.026±0.016 km−1. Computed dry bsp values were highly correlated with measured values (r2=0.97). Real-time sulfate measurements were correlated with accumulation mode volume concentrations (r2=0.89) and computed dry light scattering coefficients (r2=0.86), suggesting sulfate aerosols were the dominant contributor to visibility degradation in the park.  相似文献   

16.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

17.
PM10 aerosols at McMurdo Station, Antarctica were sampled continuously during the austral summers of 1995–1996 and 1996–1997. PM10 (particles with aerodynamic diameters less than 10 μm) mass concentrations at Hut Point, located less than 1 km from downtown McMurdo, averaged 3.4 μg m−3, more than an order of magnitude lower than the USEPA annual average National Ambient Air Quality Standard (NAAQS) of 50 μg m−3. Concentrations of methanesulfonate and nitrate were similar to those measured at other Antarctic coastal sites. Non-sea-salt sulfate (NSS) concentrations on Ross Island were higher than those found at other coastal locations. The average elemental carbon concentration (129 ng m−3) downwind of the station was two orders of magnitude higher than those measured at remote coastal and inland Antarctic sites during summer. Average sulfur dioxide concentrations (746 ng m−3) were 3–44 times higher than those reported for coastal Antarctica. Concentrations of Pb and Zn were 17 and 46 times higher than those reported for the South Pole. A methanesulfonate to biogenic sulfate ratio (R) of 0.47 was derived that is consistent with the proposed temperature dependence of R.  相似文献   

18.
Altitude profiles of the mass concentrations of aerosol black carbon (BC) and composite aerosols were obtained from the collocated measurements of these quantities onboard an aircraft, over the urban area of Kanpur, in the Ganga basin of northern India during summer, for the first time in India. The enhancement in the mean BC concentration was observed at ∼1200 m in the summer, but the vertical gradient of BC concentration is less than the standard deviation at that altitude. The difference in the BC altitude profile and columnar concentration in the winter and summer is attributed to the enhanced turbulent mixing within the boundary layer in summer. This effect is more conspicuous with BC than the composite aerosols, resulting in an increase in the BC mass fraction (FBC) at higher levels in summer. This high BC fraction results in an increase in the lower atmospheric heating rate in both the forenoon, FN and afternoon, AN, but with contrasting altitude profile. The FN profile shows fluctuating trend with highest value (2.1 K day−1) at 300 m and a secondary peak at 1200 m altitudes, whereas the AN profile shows increasing trend with highest value (1.82 K day−1) at 1200 m altitude.  相似文献   

19.
At a suburban location in southern Korea, the optical properties of the atmosphere were characterized over a horizontal light path of 1.5 km (in two ways) from 22 October to 19 November 2002. This was achieved by measuring light extinction with a long path differential optical absorption spectrometer system in the ultraviolet and visible wavelength region. The extinction coefficients were obtained relatively as a ratio of a target air spectrum to a defined reference spectrum measured over the same light path (290–760 nm). To assess the measured extinction coefficients, the extinction coefficients at 550 nm were compared to those measured with a commercial long-path transmissometer.To avoid the absorption of known gases (H2O, NO2, and O3), extinction coefficients at the spectral bands of 325, 394, 472, 550, 580, 680, and 753 nm, with 3 nm window widths, were selected and analyzed for the purpose of the study of the aerosol properties. Importantly, the atmospheric physical properties during the episodes (such as a biomass burning or a dust storm) were investigated by means of the Angstrom parameters and the mass ratio of fine-to-coarse particles. In addition, it was found that the Angstrom exponents decrease monotonously for relative humidity above 50%.  相似文献   

20.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号