共查询到20条相似文献,搜索用时 0 毫秒
1.
The Lagrangian dispersion model and its advantages while applying it in monitoring nuclear power plants in complex terrain at varying meteorological conditions is explained. The software developed has been installed at the Bavarian State Authority to monitor its six nuclear power plants. Input data are routinely measured meteorological data as well as emission data for iodine, aerosols and noble gas. 相似文献
2.
《国际环境与污染杂志》2011,18(3):243-259
The mesoscale meteorological model TVM, coupled to a photochemical/transport module in which different chemical mechanisms (RACM, EMEP) are implemented, has been evaluated. Field measurements and numerical results are used to determine the impact of the mesoscale flows on the photochemical smog episodes observed in the Greater Madrid Area for two selected days, characterised by the presence of a thermal low-pressure system over the Iberian Peninsula. During the 14 July 1992, the synoptic flow from the southeast favoured the transport of the precursors to the Guadarrama mountain range, where high concentrations of ozone were registered, exceeding the population information threshold. On the 15 July 1995, the synoptic wind from the northwest interacted with the local thermally driven flows, pushing the pollutants far away from the metropolitan area with the result that high ozone concentrations were measured to the east-southeast of the city. 相似文献
3.
Chen KS Ho YT Lai CH Tsai YA Chen SJ 《Journal of the Air & Waste Management Association (1995)》2004,54(1):36-48
This work analyzes the variations in daily maximum 1-hr ozone (O3) concentrations and the long-term trends in annual means of hourly ambient concentrations of O3, nitrogen oxides (nitrous oxide + nitrogen dioxide), and nonmethane hydrocarbons in the three administrative regions of Kao-Ping airshed in southern Taiwan over a recent 8-yr period. The annual or monthly means of all maxima, most 95th percentiles, and some 90th percentiles of the daily maximum 1-hr O3 concentrations exceed the daily limit of 120 parts per billion by volume in all three regions, namely, Kao-hsiung City, Kso-hsiung County, and P'ing-tung County. The monthly means of daily maximum 1-hr O3 concentrations exhibit distinct seasonal variations, with a bimodal form with the maxima in autumn and late winter to the middle of spring and a minimum in summer. The long-term variations in the annual means of hourly O3 concentrations in the three regions exhibit increasing trends. These increases in O3 are associated with the decline in ambient concentrations of nitrogen oxides and nonmethane hydrocarbons. High O3 episodes occur most often in autumn and most rarely in summer. The seasonal mean mixing heights in descending order follow the order of spring, summer, autumn, and winter. Meteorological parameters in autumn and winter indicate that the ground-level O3 tends to accumulate and trigger a high O3 episode on a warm day with sufficient sunlight and low wind in a high-pressure system, consistent with the low mixing heights in these two seasons. 相似文献
4.
S.R. Utembe M.C. Cooke A.T. Archibald M.E. Jenkin R.G. Derwent D.E. Shallcross 《Atmospheric environment (Oxford, England : 1994)》2010,44(13):1609-1622
A reduced chemical scheme (CRIv2-R5) which describes ozone formation from the tropospheric degradation of methane and 22 emitted non-methane hydrocarbons and oxygenated volatile organic compounds has been applied in a global-3D chemistry transport model (STOCHEM). The scheme, which contains 220 species in 609 reactions, has been used to simulate ozone and its precursors for the meteorological year of 1998 and the results have been compared with those from STOCHEM runs with its original chemistry. Compared with the original chemistry scheme, the degradation of a larger number of more reactive VOCs in the CRI scheme results in the formation (and their consequent transportation) of more NOx active reservoirs thus leading to formation of more ozone away from land-based sources. Conversely, the more reactive VOCs also lead to greater removal of OH in continental areas and greater formation of OH in marine environments. STOCHEM run with the CRI scheme simulates more ozone (by up to 10 ppb), which results in better agreement with observed vertical ozone profiles. The CRI scheme transforms the globally and annually integrated ozone budget for the considered year in STOCHEM from a net loss of ?55 Tg yr?1 to a net gain of +50 Tg yr?1. 相似文献
5.
Development of a regional hydrologic soil model and application to the Beerze--Reusel drainage basin
Kolditz O Du Y Bürger C Delfs J Kuntz D Beinhorn M Hess M Wang W van der Grift B te Stroet C 《Environmental pollution (Barking, Essex : 1987)》2007,148(3):855-866
The soil compartment is an important interface between the atmosphere and the subsurface hydrosphere. In this paper a conceptual approach for regional hydrologic soil modelling (RHSM) is presented, which provides two important qualities for modelling. First, the soil compartment is directly coupled to the atmosphere via the land surface and to the aquifers. Second, extremely fine (5cm vertical) resolutions of the soil system can be realized at regional scales (several hundreds of km(2)). This high-resolution modelling could be achieved by parallel computation techniques. The RHSM approach is applied to the Beerze-Reusel drainage basin, which belongs to the Meuse River basin. Moisture transport in the soil system was calculated with extremely high vertical resolution at a regional scale based on rainfall-evaporation data for the year 2000. As a result, highly resolved regional groundwater recharge pattern addressing the heterogeneity of soil systems could be determined. 相似文献
6.
Three high O3 episodes--7 days in 1992 (July 3-July 9), 9 days in 1994 (July 21-July 29), and another 3 days in 1994 (August 22-August 24)--were selected on the basis of morning (7:00 a.m.-10:00 a.m.) average wind direction and speed and daily maximum O3 concentrations in the greater Seoul, Korea, of 1990-1997. To better understand their characteristics and life cycles, surface data from the Seoul Weather Station (SWS) and surface and 850-hPa wind field data covering northeast Asia around the Korean Peninsula were used for the analysis. In the July 1992 episode, westerly winds were most frequent as a result of the influence of a high-pressure system west of the Korean Peninsula behind a trough. In contrast, in the July 1994 episode, easterly winds were most frequent as a result of the effect of a typhoon moving north from the south of Japan. Despite different prevailing wind directions, the peak O3 concentrations for each episode occurred when a sea/land breeze developed in association with weak synoptic forcing. The August 1994 episode, which was selected as being representative of calm conditions, was another typical example in which a well-developed 相似文献
7.
《Atmospheric environment (Oxford, England : 1994)》2002,36(9):1559-1564
This paper describes parallelization of a 3-D Lagrangian stochastic atmospheric dispersion model using both distributed- and shared-memory methods. Shared-memory parallelism is implemented through the use of OpenMP compiler directives. Distributed-memory parallelism relies on the MPI message-passing library. One or both (using MPI for inter-node and OpenMP for intra-node communication) of the parallel modes can be used depending upon the requirements of the problem and the computational platform available. The distributed-memory version achieves a nearly linear decrease in execution time as the number of processors is increased. As the number of particles per processor is lowered, performance is limited by the decrease in work per processor and by the need to produce one set of output files. The shared-memory version achieves a speedup factor of ∼1.4 running on machines with four processors. 相似文献
8.
Data from the UK national air-quality monitoring network are used to calculate an annual mass budget for ozone (O3) production and loss in the UK boundary layer during 1996. Monthly losses by dry deposition are quantified from 1 km x 1 km scale maps of O(3) concentration and O(3) deposition velocities based on a big-leaf resistance analogy. The quantity of O(3) deposition varies from approximately 50 Gg-O(3) month(-1) in the winter to over 200 Gg-O(3) month(-1) in the summer when vegetation is actively absorbing O(3). The net O(3) production or loss in the UK boundary layer is found by selecting days when the UK is receiving "clean" Atlantic air from the SW to NW. In these conditions, the difference in O(3) concentration observed at Mace Head and a rural site on the east coast of the UK indicates the net O(3) production or loss within the UK boundary layer. A simple box model is then used to convert the concentration difference into a mass. The final budget shows that for most of the year the UK is a net sink for O(3) (-25 to -800 Gg-O(3) month(-1)) with production only exceeding losses in the photochemically active summer months (+45 Gg-O(3) month(-1)). 相似文献
9.
10.
Page T Whyatt JD Metcalfe SE Derwent RG Curtis C 《Environmental pollution (Barking, Essex : 1987)》2008,156(3):997-1006
Acid deposition models are inherently simplified representations of real world behaviour and their performance is best evaluated by comparison with observations. National and international acid rain policy assessments handle observed and modelled deposition fields in different ways. Here, both the observed and modelled deposition fields are seen as uncertain and the Generalised Likelihood Uncertainty Estimation (GLUE) framework is used to choose acceptable sets of model input parameters that minimise the differences between them. These acceptable sets of model parameters are then used to estimate deposition budgets to the UK and to provide a probabilistic treatment of excess deposition over environmental quality standards (critical loads). 相似文献
11.
Mills G Ball G Hayes F Fuhrer J Skärby L Gimeno B De Temmerman L Heagle A;ICP Vegetation programme 《Environmental pollution (Barking, Essex : 1987)》2000,109(3):533-542
Results are presented from the UN/ECE ICP Vegetation (International Cooperative Programme on effects of air pollution on natural vegetation and crops) experiments in which ozone(O(3))-resistant (NC-R) and -sensitive (NC-S) clones of white clover (Trifolium repens cv. Regal) were exposed to ambient O(3) episodes at 14 sites in eight European countries in 1996, 1997 and 1998. The plants were grown according to a standard protocol, and the forage was harvested every 28 days for 4-5 months per year by excision 7 cm above the soil surface. Biomass ratio (NC-S/NC-R) was related to the climatic and pollutant conditions at each site using multiple linear regression (MLR) and artificial neural networks (ANNs). Twenty-one input parameters [e.g. AOT40, 7-h mean O(3) concentration, daylight vapour pressure deficit (VPD), daily maximum temperature] were considered individually and in combination with the aim of developing a model with high r(2) and simple structure that could be used to predict biomass change in white clover. MLR models were generally more complex, and performed less well for unseen data than non-linear ANN models. The ANN model with the best performance had five inputs with an r(2) value of 0.84 for the training data, and 0.71 for previously unseen data. Two inputs to the model described the O(3) conditions (AOT40 and 24-h mean for O(3)), two described temperature (daylight mean and 24-h mean temperature), and the fifth input appeared to be differentiating between semi-urban and rural sites (NO concentration at 17:00). Neither VPD nor harvest interval was an important component of the model. The model predicted that a 5% reduction in biomass ratio was associated with AOT40s in the range 0.9-1.7 ppm x h (microl l(-1) h) accumulated over 28 days, with plants being most sensitive in conditions of low NO(x), medium-range temperature, and high 24-h mean O(3) concentration. 相似文献
12.
M J Martin G E Host K E Lenz J G Isebrands 《Environmental pollution (Barking, Essex : 1987)》2001,115(3):425-436
Predicting ozone-induced reduction of carbon sequestration of forests under elevated tropospheric ozone concentrations requires robust mechanistic leaf-level models, scaled up to whole tree and stand level. As ozone effects depend on genotype, the ability to predict these effects on forest carbon cycling via competitive response between genotypes will also be required. This study tests a process-based model that predicts the relative effects of ozone on the photosynthetic rate and growth of an ozone-sensitive aspen clone, as a first step in simulating the competitive response of genotypes to atmospheric and climate change. The resulting composite model simulated the relative above ground growth response of ozone-sensitive aspen clone 259 exposed to square wave variation in ozone concentration. This included a greater effect on stem diameter than on stem height, earlier leaf abscission, and reduced stem and leaf dry matter production at the end of the growing season. Further development of the model to reduce predictive uncertainty is discussed. 相似文献
13.
Assuming that settling takes place in two zones (a constant rate zone and a variable rate zone), a model using four parameters accounting for the nature of the water-suspension system has been proposed for describing batch sedimentation processes. The sludge volume index (SVI) has been expressed in terms of these parameters. Some disadvantages of the SVI application as a design parameter have been pointed out, and it has been shown that a relationship between zone settling velocity and sludge concentration is more consistent for describing the settling behavior and for design of settling tanks. The permissible overflow rate has been related to the technological parameters of secondary settling tank by simple working equations. The graphical representations of these equations could be used to optimize the design and operation of secondary settling tanks. 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2002,36(32):5031-5042
Correct prediction of the initial rise of a plume due to momentum and buoyancy effects is an important factor in dispersion modelling. A new plume rise scheme, based upon conservation equations of mass, momentum and heat, for the Lagrangian model, NAME, is described. The conservation equations are consistent with the well-known analytical plume rise formulae for both momentum- and buoyancy-dominated plumes. The performance of the new scheme is assessed against data from the Kincaid field experiment. Results show that the new scheme adds value to the model and significantly outperforms the previous plume rise scheme. Using data from assessments of atmospheric dispersion models using the Kincaid data set, it is shown that NAME is comparable to other models over short ranges. 相似文献
15.
《Atmospheric environment (Oxford, England : 1994)》2007,41(12):2594-2611
A three-dimensional chemical transport model (PMCAMx) is used to simulate PM mass and composition in the eastern United States for a July 2001 pollution episode. The performance of the model in this region is evaluated, taking advantage of the highly time and size-resolved PM and gas-phase data collected during the Pittsburgh Air Quality Study (PAQS). PMCAMx uses the framework of CAMx and detailed aerosol modules to simulate inorganic aerosol growth, aqueous-phase chemistry, secondary organic aerosol formation, nucleation, and coagulation. The model predictions are compared to hourly measurements of PM2.5 mass and composition at Pittsburgh, as well as to measurements from the AIRS and IMPROVE networks. The performance of the model for the major PM2.5 components (sulfate, ammonium, and organic carbon) is encouraging (fractional errors are in general smaller than 50%). Additional improvements are possible if the rainfall measurements are used instead of the meteorological model predictions. The modest errors in ammonium predictions and the lack of bias for the total (gas and particulate) ammonium suggest that the improved ammonia inventory used is reasonable. The significant errors in aerosol nitrate predictions are mainly due to difficulties in simulating the nighttime formation of nitric acid. The concentrations of elemental carbon (EC) in the urban areas are significantly overpredicted. This is a problem related to both the emission inventory but also the different EC measurement methods that have been used in the two measurement networks (AIRS and IMPROVE) and the actual development of the inventory. While the ability of the model to reproduce OC levels is encouraging, additional work is necessary to confirm that that this is due to the right reasons and not offsetting errors in the primary emissions and the secondary formation. The model performance against the semi-continuous measurements in Pittsburgh appears to be quite similar to its performance against daily average measurements in a wide range of stations across the Eastern US. This suggests that the skill of the model to reproduce the diurnal variability of PM2.5 and its major components is as good as its ability to reproduce the daily average values and also the significant value of high temporal resolution measurements for model evaluation. 相似文献
16.
17.
Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10(-9) g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts. 相似文献
18.
Development of a black carbon-inclusive multi-media model: application for PAHs in Stockholm 总被引:1,自引:0,他引:1
A multi-media model was developed for predicting the fate of organic chemicals in the Greater Stockholm Area, Sweden, and applied to selected polycyclic aromatic hydrocarbons (PAHs). Although urban models have been previously developed, this model is novel in that it includes sorption to pyrogenically-derived particles, commonly termed "black carbon" (BC), within the model structure. To examine the influence of BC sorption on environmental fate of PAHs, two versions of the model were generated and run: one in which sorption to BC was included and one in which BC sorption was excluded. The inclusion of BC sorption did not cause any significant variations to air levels, but it did cause an average 20-30% increase in sediment concentrations related to increased sediment solids partitioning. The model also predicted reduced advective losses out of the model domain, as well as chemical potential to diffuse from sediments, whilst total chemical inventory increased. In all cases, the lighter PAHs were more affected by BC inclusion than their heavier counterparts. We advocate the addition of sorption to BC in future multi-media fate and exposure models, which as well as influencing fate will also alter (lower) chemical availability and, thus, wildlife exposure to hydrophobic chemicals. A quantification of the latter was derived with the help of the soot-inclusive model version, which estimated a lowering of dissolved water concentrations between five and >200 times for the different PAHs of this study. 相似文献
19.
Tilo Ziehn Nick S. Dixon Alison S. Tomlin 《Atmospheric environment (Oxford, England : 1994)》2009,43(37):5978-5988
A combined Lagrangian stochastic model with micro-mixing and chemical sub-models is used to investigate a reactive plume of nitrogen oxides (NOx) released into a turbulent grid flow doped with ozone (O3). Sensitivities to the model input parameters are explored for different source NOx scenarios. The wind tunnel experiments of Brown and Bilger (1996) provide the simulation conditions for the first case study where photolysis reactions are not included and the main uncertainties occur in parameters defining the turbulence scales, source size and reaction rate of NO with O3. Using nominal values of the parameters from previous studies, the model gives a good representation of the radial profile of the conserved mean scalar although slightly over predicts peak mean NO2 concentrations compared to the experiments. The high dimensional model representation (HDMR) method is used to investigate the effects of uncertainties in model inputs on the simulation of chemical species concentrations. For this scenario, the Lagrangian velocity structure function coefficient has the largest impact on simulated profiles. Photolysis reactions are then included in a chemical scheme consisting of eight reactions between species NO, O, O3 and NO2. Independent and interactive effects of 22 input parameters are studied for two source NOx scenarios using HDMR, including turbulence parameters, temperature dependant rate parameters, photolysis rates, temperature, fraction of NO in total NOx at the source and background ozone concentration [O3]. For this reactive case, the variance in the predicted mean plume centre is caused by parameters describing both physical (mixing time-scale coefficient) and chemical processes (activation energy for the reaction O3+NO). The variance in predicted plume centre and root mean square NO2 concentration , is strongly influenced by the fraction of NO in the source NOx, and to a lesser extent the mixing time-scale coefficient. Adjusting the latter gives improved agreement with the Brown and Bilger experiment. Some weak parameter interactions are observed. 相似文献
20.
Development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoirs 总被引:1,自引:0,他引:1
Pierson-Wickmann AC Gruau G Jardé E Gaury N Brient L Lengronne M Crocq A Helle D Lambert T 《Chemosphere》2011,83(3):356-366
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9 mg L−1) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ13C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ13C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ13C values of the DOC recovered in the reservoir (−28.5 ± 0.2‰; n = 22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ13C in algae = −30.1 ± 0.3‰; n = 2) being indistinguishable from the δ13C values of allochthonous DOC from inflowing rivers (−28.6 ± 0.1‰; n = 8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs. 相似文献