首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, -thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.

The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   


2.
Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned “on” or “off” at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1–0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h−1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h−1 particle number concentration in the 0.1–0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5–0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h−1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth occurred. These results illustrate still another way in which ventilation affects human exposures in indoor settings. However, the ultimate effects of these exposures on health and well being remain to be determined.  相似文献   

3.
The emissions of selected flame retardants were measured in 1- and 0.02-m3 emission test chambers and 0.001-m3 emission test cells. Four product groups were of interest: insulating materials, assembly foam, upholstery/mattresses, and electronics equipment. The experiments were performed under constant environmental conditions (23°C, 50% RH) using a fixed sample surface area and controlled air flow rates. Tris (2-chloro-isopropyl)phosphate (TCPP) was observed to be one of the most commonly emitted organophosphate flame retardants in polyurethane foam applications. Depending on the sample type, area-specific emission rates (SERa) of TCPP varied between 20 ng m−2 h−1 and 140 μg m−2 h−1.The emissions from electronic devices were measured at 60°C to simulate operating conditions. Under these conditions, unit specific emission rates (SERu) of organophosphates were determined to be 10–85 ng unit−1 h−1. Increasing the temperature increased the emission of several flame retardants by up to a factor of 500. The results presented in this paper indicate that emissions of several brominated and organophosphate flame retardants are measurable. Polybrominated diphenylethers exhibited an SERa of between 0.2 and 6.6 ng m−2 h−1 and an SERu of between 0.6 and 14.2 ng unit−1 h−1. Because of sink effects, i.e., sorption to chamber components, the emission test chambers and cells used in this study have limited utility for substances low vapour pressures, especially the highly brominated compounds; hexabromocyclododecane had an SERa of between 0.1 and 29 ng m−2 h−1 and decabromodiphenylether was not detectable at all.  相似文献   

4.
Boundary layer ozone and carbon monoxide were measured at a savannah site in the Orinoco river basin, during the dry and wet seasons. CO and O3 concentrations recorded around noontime show a good linear correlation, suggesting that the higher ozone levels observed during the dry season are photochemically produced during the oxidation of reactive hydrocarbons in the presence of NOx both emitted by biomass burning. The rate of photochemical ozone production in the boundary layer ozone by biomass burning calculated from the production ratio ΔO3/ΔCO (0.17±0.01 v : v) and the amount of CO produced by fires (0.26–1.3 mole m−2 dry season−1), ranges from 0.6 to 2.6 ppbv h−1 for 8 h of daylight. This O3 production rate is in fairly good agreement with the value derived from RO2 radical measurements made in the Venezuelan savannah during the dry season. The net boundary layer production of O3 from all tropical America savannah fires is estimated to range between 0.28 and 0.36 Tmol O3 per year, which is about 3 times higher than the O3 produced from pollution sources in the eastern United States during the summer. An extrapolation to all of the world's savannah would indicate a net boundary layer ozone production of about 1.2 Tmol yr−1. This is discussed in the context of the overall global budget of tropospheric ozone.  相似文献   

5.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

6.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

7.
This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM10 and PM2.5 increased with increasing load. The LPNE was 3.5 mg tire−1 km−1 for a two wheeler and 6.4 mg tire−1 km−1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM10 and PM2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM10 was present below 1 μm. The number as well as mass size distribution for PM10 was observed to be bi-modal with peaks at 0.3 μm and 4–5 μm. The NE emissions did not show any significant trend with change in tire pressure.  相似文献   

8.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

9.
Observations of air pollutants were conducted in remote Japanese islands (Oki Island and Okinawa Island) in early spring to clarify the extent of trans-boundary air pollution from the Asian continent. A three-dimensional Eulerian model calculation, which included parameters on emission, transport and transformation of sulfur oxides, nitrogen oxides and ammonia, was performed to compile sulfate isosurface concentrations over the observational sites. Concentrations of non-sea-salt sulfate (nss-SO42−) of greater than 10 μg m−3 were observed at Oki after the northeastward passage of low-pressure systems in the Sea of Japan. At these times, the weather showed a typical winter pattern and air pollutants over China were transported southeastward to Japan with the northwesterly wind. The model calculation reproduced the observed variations of nss-SO42− concentration well, except for one case in which the model calculation could not reproduce the extremely low nss-SO42− concentration observed on 8 March. In Hedo (Okinawa Island), we observed long-lasting (3 days) medium concentrations of nss-SO42− (approximately 5 μg m−3). Although the model reproduced these observed medium concentrations well, in general the observed results were reproduced better for Oki than for Hedo. Under the synoptic weather conditions of early spring, high concentrations of nss-sulfate were sometimes transported to these remote Japanese islands from areas of continental Asia with a strong outflow of air pollutants.  相似文献   

10.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

11.
The annual cycles of hydrogen peroxide (H2O2) and methylhydroperoxide (MHP) have been investigated at a remote site in Antarctica in order to study seasonal variations as well as chemical processes in the troposphere. The measurements have been performed from March 1997 to January 1998 and in February 1999 at the German Antarctic research station Neumayer which is located at 70°39′S, 8°15′W. The obtained time series for hydrogen peroxide and methylhydroperoxide in near-surface air represents the first all-year measurements in Antarctica and indicates clearly the occurrence of seasonal variations. During polar night mean values of 0.054±0.046 ppbv (range<0.03–0.11 ppbv) for hydrogen peroxide and 0.089±0.052 ppbv (range<0.05–0.14 ppbv) for methylhydroperoxide were detected. At the sunlit period higher Mixing ratios were found, 0.20±0.13 ppbv (range<0.03–0.91 ppbv) for hydrogen peroxide and 0.19±0.10 ppbv (range<0.05–0.89 ppbv) for methylhydroperoxide. Occasional long-range transport of air masses from mid-latitudes caused enhanced peroxide concentrations at polar night. During the period of stratospheric ozone depletion we observed peroxide mixing ratios comparable to typical winter levels.  相似文献   

12.
In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO3 contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km2 area of Texas suggest that reduction during recharge limits NO3 loading to ground water. Tritium and Cl concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO3–N suggest denitrification, but O2 concentrations ≥3.24 mg l−1 indicate that NO3 reduction in ground water is unlikely. The presence of denitrifying and NO3-respiring bacteria in cores, typical soil–gas δ15N values <0‰, and decreases in NO3–N/Cl and SO42−/Cl ratios with depth in cores suggest that reduction occurs in the upper vadose zone beneath playas. Reduction may occur beneath flooded playas or within anaerobic microsites beneath dry playas. However, NO3–N concentrations in ground water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.  相似文献   

13.
The main objective of the present study was to investigate possible links between biomarkers and swimming performance in the estuarine fish Pomatoschistus microps acutely exposed to metals (copper and mercury). In independent bioassays, P. microps juveniles were individually exposed for 96 h to sub-lethal concentrations of copper or mercury. At the end of the assays, swimming performance of fish was measured using a device specially developed for epibenthic fish (SPEDE). Furthermore, the following biomarkers were measured: lipid peroxidation (LPO) and the activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), glutathione S-transferases (GST), 7-ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx). LC50s of copper and mercury (dissolved throughout metal concentrations) at 96 h were 568 μg L−1 and 62 μg L−1, respectively. Significant and concentration-dependent effects of both metals on swimming resistance and covered distance against water flow were found at concentrations equal or higher than 50 μg L−1 for copper and 3 μg L−1 for mercury (dissolved throughout metal concentrations). These results indicate that SPEDE was efficacious to quantify behavioural alterations in the epibenthic fish P. microps at ecologically relevant concentrations. Significant alterations by both metals on biomarkers were found including: inhibition of AChE and EROD activities, induction of LDH, GST and anti-oxidant enzymes, and increased LPO levels, with LOEC values ranging from 25 to 200 μg L−1 for copper and from 3 to 25 μg L−1 for mercury (dissolved throughout metal concentrations). Furthermore, significant and positive correlations were found between some biomarkers (AChE and EROD) and behavioural parameters, while negative correlations were found for others (LPO, anti-oxidant enzymes and LDH) suggesting that disruption of cholinergic function through AChE inhibition, decreased detoxification capability due to EROD inhibition, additional energetic demands to face chemical stress, and oxidative stress and damage may contribute to decrease the swimming performance of fish. Since a reduced swimming capability of fish may reduce their ability to capture preys, avoid predators, and interfere with social and reproductive behaviour, the exposure of P. microps to copper and/or mercury concentrations similar to those tested here may decrease the fitness of wild populations of this species.  相似文献   

14.
Removal of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen and naproxen) using extended sludge age biological process was investigated. The sludge age of the biological system was greater than 200 d. Hydraulic retention time of 12 h was maintained throughout the experiment. The extended sludge age biological process is able to treat pharmaceuticals with good and steady removal efficiencies: 64–93% removal for antibiotics over 1–5 μg L−1 influent concentrations and 94% to complete removal for acetaminophen and ibuprofen with a wide range of influent concentrations 1–100 μg L−1. For ketoprofen and naproxen the removal efficiencies are 79–96% over a range of 1–15 μg L−1 influent concentrations. The removal efficiency decreases with increasing initial concentrations for all target compounds except for ibuprofen. This indicates that the initial influent concentration is an important parameter for the studies of fate of pharmaceuticals. The amount of bio-mass and size of the reactor required to achieve good and steady removal efficiencies for known influent pharmaceutical concentrations are also suggested in this study.  相似文献   

15.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

16.
A total of 71 air samples were collected in Hong Kong area from November 2001 to February 2003 using a high-volume air sampler and a high-volume cascade impactor with five atmospheric pressure stages. The 7Be radioactivity on each stage was measured using a high-efficiency germanium gamma-ray spectrometer. From the radioactivity of stages, the total airborne 7Be radioactivity was determined. The activity median aerodynamic diameter (AMAD) of 7Be-associated atmospheric aerosols was found to be 0.22–1.11 μm and the geometric standard deviation (GSD) was found to be 1.2–10.5. With the assumed mean growth rate (MGR) of atmospheric aerosols of 0.004–0.005 μm h−1 and the size of Aitken nuclei of 0.015 μm, the residence times of 7Be-associated atmospheric aerosols were also found from the AMAD.Three-dimensional 4-day back-trajectories were obtained using the HYSPLIT model from NOAA Air Resources Laboratory. These trajectories were used with the measured 7Be radioactivity to construct regional 7Be intensity fields for four different altitude levels (less than 1000, 1000–2000, 2000–3000 and above 3000 m) with a Geographic Information System (GIS). Low 7Be intensities were found to have advected from low altitudes (less than 1000 m) and oceanic areas. The 7Be intensities increased for the higher intensity field layers.By comparing the time taken for air masses to come from the 7Be source to Hong Kong and the residence time determined from the AMAD of 7Be-associated atmospheric aerosols, good agreement was found if the mean growth rate of 0.005 μm h−1 for atmospheric aerosols was used, and the use of back-trajectories was shown to be satisfactory even up to about 6.5 d. By using the residence time with a MGR of 0.005 μm h−1, the 7Be source was found to be relatively well confined in the areas of Mongolia and southeastern Siberia, which further supported that the association of 7Be source with the Siberian anticyclone.  相似文献   

17.
A nationwide study of indoor air concentrations of 26 VOCs was conducted in Canada in 1991. The study design was based upon random selection of private residences from 1986 Census data and incorporated a temporal stratification feature that allowed sampling of residences in each of four regions of the country at different times of the year with equal probability. Average 24 h concentrations of 26 VOCs in 754 residences were obtained by a passive monitoring method. Initially, climatic parameters were found to have the second highest relative weight among 14 factors identified by factor analysis. Further analysis by linear regression showed that individual VOC concentrations and average outdoor temperature or relative humidity were poorly correlated (r > 0.13). Detailed analysis of the data from four regions of Canada also gave poor correlations between household VOC concentrations and temperature or relative humidity. Concentrations of all 26 VOCs averaged 7.8 μg m−3 in winter, 10.3 μg m−3 in spring, 4.4 μg m−3 in summer and 10.8μ m−3 in fall. The highest concentrations of individual compounds averaged 84μm−3 for toluene in the spring and 42 μg m−3 in the fall, and 44 μg m−3 for decane in the spring and 48 μg m−3 in the fall. Segregation of the results into outdoor temperature ranges of 0°C, 0–15 and > 15°C gave mean indoor VOC concentrations of 10.3, 9.8 and 50μgm−3, respectively. Further examination of the results revealed that the likely presence of sources within homes had a far greater influence on indoor concentrations than ventilation which is partly influenced by climate.  相似文献   

18.
A classical rain sensor was modified to meet the demand to detect all the precipitation of the minimum intensity of R=0.1 mm h−1, in a time interval of not longer than 30 s. The calculation of the response time of the sensor is based on the raindrop size distribution for drizzle type of rain. Theoretical solution of the response time, for any type of raindrop size distribution and any intensity of rainfall, is presented. The response time was measured in an experiment in situ, and the results of measurement for various intensities of rainfall (0.02–1.44 mm h−1), and snowfall (0.0012–1 mm h−1) are presented. The experimental response times for rainfall are somewhat shorter than predicted by theory. In addition, it was shown that the sensor was sensitive even to the snowfall of 0.0012 mm h−1 intensity.  相似文献   

19.
Croplands contribute to atmospheric nitric oxide (NO), but very limited data are available about NO fluxes from intensively managed croplands in China. In this study, NO fluxes were measured in a typical vegetable field planted with flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee), which is the most widely cultivated vegetable in Guangdong province, south China. NO emission drastically increased after nitrogen fertilizer application, and other practices involving loosening the soil also enhanced NO emission. Mean NO emission flux was 47.5 ng N m−2 s–1 over a complete growth cycle. Annual NO emission from the vegetable field was about 10.1 kg N ha−1 yr−1. Fertilizer-induced NO emission factor was estimated to be 2.4%. Total NO emission from vegetable fields in Guangdong province was roughly estimated to be 11.7 Gg N yr−1 based on the vegetable field area and annual NO emission rate, and to be 13.3 Gg N yr−1 based on fertilizer-induced NO emission factor and background NO emission. This means that NO emission from vegetable fields was approximately 6% of NOx from commercial energy consumption in Guangdong province.  相似文献   

20.
Impact of initial and boundary conditions on preferential flow   总被引:4,自引:1,他引:3  
Preferential flow in soil is approached by a water-content wave, WCW, that proceeds downward from the ground surface. WCWs were obtained from sprinkler experiments with infiltration rates varying from 5 to 40 mm h− 1. TDR-probes and tensiometers measured volumetric water contents θ(z,t) at seven depths, and capillary heads, h(z,t) at six depths in a column of an undisturbed soil. The wave is characterized by the velocity of the wetting front, cW, the amplitude, wS, and the final water content, θ. We tested with uni-variate and bi-variate linear regressions the impacts of initial volumetric water contents, θini, and input rates, qS, on cW, wS and θ.The test showed that θini influenced θ and wS and qS effected cW. The expected proportionality of wS ≈ qs1/3 was weak and cW ≈ qs2/3 was strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号