首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metals in soils may adversely affect environmental quality. In this study, we investigated the release of Zn, Cd, Pb, and Cu from four contaminated soils by column leaching and single and sequential batch extractions. Homogeneously packed soil columns were leached with 67 mL/g 10(-2) M CaCl2 to investigate the exchangeable metal pool and subsequently with 1400 mL/g 10(-2) M CaCl2 adjusted to pH 3 to study the potential of metal release in response to soil acidification. In two noncalcareous soils (pH 5.7 and 5.1), exchange by Ca resulted in pronounced release peaks for Zn and Cd that were coupled to the exchange of Mg by Ca, and 40 to 70% of total Zn and Cd contents were rapidly mobilized. These amounts compared well with exchangeable pools determined in single and sequential batch extractions. In two soils with near-neutral pH, the effluent concentrations of Zn and Cd were several orders of magnitude lower and no pronounced elution peaks were observed. This behavior was also observed for Cu and Pb in all four soils. When the soils were leached at pH 3, the column effluent patterns reflected the coupling of CaCO3 dissolution (if present) and other proton buffering reactions, proton-induced metal release, and metal-specific readsorption within the soil column. Varying the flow rate by a factor of five had only minor effects on the release patterns. Overall, Ca exchange and subsequent acidification to pH 3 removed between 65 and 90% of total Zn, Cd, Pb, and Cu from the four contaminated soils.  相似文献   

2.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

3.
Use of metal-rich sewage sludge as soil fertilizer may result in trace- metal contamination of soils. This study was conducted to evaluate the effects of long-term sludge application on trace-metal (Zn, Cu, Pb, and Ni) distribution and potential bioavailability in Nigerian soils under a tropical wet-dry climate. Total metal analyses, sequential chemical fractionation, and DTPA extractions were carried out on samples of control and sludge-amended pedons in Nigeria (a Rhodic Kandiustult and two Rhodic Kandiustalfs from Nigeria, respectively). The sewage sludge applied to the soils contained higher levels of Zn and Cu than Pb and Ni. The control pedon contained low levels of all four metals. Soil enrichment factors (EF) were calculated for each metal in the sludge-amended pedons. Compared with the control soil, the sludge-amended pedons showed elevated levels of Zn and Cu, reflecting the trace-metal composition of the sewage sludge. Zinc and Cu in the sludge-amended soils were strongly enriched at all depths in the profile, indicating that they had moved below the zone of sludge application. The sequential extraction and DTPA analyses indicated that the sludge-amended soils contained more readily extractable and bioavailable metal ions than the unamended soil.  相似文献   

4.
A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed during column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.  相似文献   

5.
In situ stabilization of Pb contaminated soils can be accomplished by adding P and Mn(IV) oxide. However, the long-term efficacy of in situ stabilization under continual P removal through plant growth is unknown. Moreover, the effects these treatments have on phytoavailability of other metals (Cd and Zn) commonly associated with Pb in soil are not well understood. Greenhouse experiments using sudax [Sorghum vulgare (L.) Moench] and Swiss chard [Beta vulgaris (L.) Koch] were carried out to evaluate the effects of plant growth on soil Pb bioavailability to humans after addition of P and other amendments, and the effects of these treatments on Pb, Cd, and Zn phytoavailability in three metal-contaminated soils. Eight treatments were used: zero P; 2500 mg of P as triple superphosphate (TSP); 5000 mg of P as TSP or phosphate rock (PR); 5000 mg of Mn oxide/kg; and combinations of Mn oxide and P as TSP or PR. The addition of P and/or Mn oxide significantly reduced bioavailable Pb, as measured by the physiologically based extraction test (PBET), in soils compared with the control even after extensive cropping. The PBET data also suggested that removal of P from soluble P sources by plants could negate the beneficial effects of P on bioavailable Pb, unless sufficient soluble P was added or soluble P was combined with Mn oxide. In general, Ph, Cd, and Zn concentrations in shoot tissues of sudax and Swiss chard were reduced significantly by TSP and did not change with the addition of PR. The combination of PR and Mn oxide significantly reduced Pb concentrations in plants compared with the control.  相似文献   

6.
The presence of toxic metals in natural environments presents a potential health hazard for humans. Metal contaminants in these environments are usually tightly bound to colloidal particles and organic matter. This represents a major constraint to their removal using currently available in situ remediation technologies. One technique that has shown potential for facilitated metal removal from soil is treatment with an anionic microbial surfactant, rhamnolipid. Successful application of rhamnolipid in metal removal requires knowledge of the rhamnolipid-metal complexation reaction. Therefore, our objective was to evaluate the biosurfactant complexation affinity for the most common natural soil and water cations and for various metal contaminants. The conditional stability constant (log K) for each of these metals was determined using an ion-exchange resin technique. Results show the measured stability constants follow the order (from strongest to weakest): Al3+ > Cu2+ > Pb2+ > Cd2+ > Zn2+ > Fe3+ > Hg2+ > Ca2+ > Co2+ > Ni2+ > Mn2+ > Mg2+ > K+. These data indicate that rhamnolipid will preferentially complex metal contaminants such as lead, cadmium, and mercury in the presence of common soil or water cations. The measured rhamnolipid-metal stability constants were found in most cases to be similar or higher than conditional stability constants reported in the literature for metal complexation with acetic acid, oxalic acid, citric acid, and fulvic acids. These results help delineate the conditions under which rhamnolipid may be successfully applied as a remediation agent in the removal of metal contaminants from soil, as well as surface waters, ground water, and wastestreams.  相似文献   

7.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   

8.
Chemical immobilization is a relatively inexpensive in situ remediation method that reduces soil contaminant solubility, but the ability of this remediation treatment to reduce heavy metal bioavailability and ecotoxicity to soil invertebrates has not been evaluated. Our objectives were to (i) assess the ability of chemical immobilization amendments (municipal sewage sludge biosolids and rock phosphate) to reduce metal bioavailability and toxicity in a toxic metal-contaminated smelter soil and (ii) evaluate soil extraction methods using Ca(NO3)2 solution or ion-exchange membranes coated with diethylenetriaminepentaacetic acid (DTPA) as surrogate measures of metal bioavailability and ecotoxicity. We treated a soil contaminated by Zn and Pb milling and smelting operations and an uncontaminated control soil with lime-stabilized municipal biosolids (LSB), rock phosphate (RP), or anaerobically digested municipal biosolids (SS) and evaluated lethality of the remediated soils to earthworm (Eisenia fetida Savigny). Lime-stabilized municipal biosolids was the only remediation amendment to successfully immobilize lethal levels of Zn in the smelter soil (14-d cumulative mortality < or = 15%). Calcium nitrate-extractable Zn in the lethal Zn smelter soil-amendment combinations was 11.5 to 18.2 mmol/kg, compared with the nonlethal LSB amended soil (0.62 mmol/kg). The Ca(NO3)2-extractable Zn-based median lethal concentration (LC50) of 6.33 mmol/kg previously developed in Zn-spiked artificial soils was applicable in the remediated smelter soils despite a 14-fold difference in total Zn concentration. Chelating ion-exchange membrane uptake among the soils was highly variable (mean CV = 39%) compared with the Ca(NO3)2-extraction (mean CV = 1.9%) and not well related to earthworm toxicity.  相似文献   

9.
Lead phytoextraction from contaminated soil with high-biomass plant species   总被引:5,自引:0,他引:5  
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.  相似文献   

10.
通过2年的定点调查,研究了湘中某工业区附近农田土壤、糙米中重金属含量状况;并对重金属在水稻植株中的含量分布,以及影响糙米中重金属含量的土壤因素进行了探讨。  相似文献   

11.
The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of soils and ground waters worldwide. To help alleviate such environmental contamination, we investigated a coupled abiotic-biotic treatment scheme for remediating TNT-contaminated soil in slurry solutions. Two types of soil were used (sandy and silt loam) to simulate different soils that might be found at actual sites. These soils were subsequently contaminated with 5000 mg kg(-1) TNT. Mineralization of TNT was initially optimized for minimum reactant use (Fe(3+) and H(2)O(2)) and maximum soil slurry percentage (percent solids) using modified Fenton reactions conducted in the absence of light followed by the addition of an uncharacterized aerobic biomass. Greater than 97% TNT degradation was observed under optimum reaction conditions for both soils. Using two optimum reactant concentrations for each soil, coupled abiotic-biotic reactions showed an increase in TNT mineralization, from 41 to 73% and 34 to 64% in the sandy soil (10 and 20% slurry, respectively, 1470 mM H(2)O(2)), and increases from 12 to 23% and 13 to 28% in the silt loam soil (5% slurry, 294 and 1470 mM H(2)O(2), respectively). These results show promise in the use of combined abiotic-biotic treatment processes for soils contaminated with high concentrations of TNT.  相似文献   

12.
The hazard imposed by trace element contaminants within soils is dependent on their ability to migrate into water systems and their availability for biological uptake. The degree to which a contaminant may dissociate from soil solids and become available to a target organism (i.e., bioaccessibility) is therefore a determining risk factor. We used a physiologically based extraction test (PBET) to estimate the bioaccessible fraction of arsenic-, chromium-, and lead-amended soil. We investigated soils from the A and B horizons of the Melton Valley series, obtained from Oak Ridge National Laboratory site, to address temporal changes in bioaccessibility. Additionally, common extractions that seek to define reactive pools of metals were employed and their correlation to PBET levels evaluated. With the exception of Pb amended to the A horizon, all other treatments exhibited an exponential decrease in bioaccessibility with incubation time. The bioaccessible fraction was less than 0.2 mg kg(-1) within 30 d of incubation for As and Cr in the A horizon and for As and Pb within the B horizon; Cr in the B horizon declined to nearly 0.3 mg kg(-1) within 100 d of aging. The exchangeable fraction declined with incubation period and, with the exception of Pb, was highly correlated with the decline in bioaccessibility. Our results demonstrate limited bioaccessibility in all but one case and the need to address both short-term temporal changes and, most importantly, the soil physiochemical properties. They further reveal the importance of incubation time on the reactivity of such trace elements.  相似文献   

13.
Vegetation that develops spontaneously on metal-contaminated soils presents an opportunity to evaluate both metal bioavailability and the risks posed to biota. The behavior of Cd and Zn in the species of a spontaneously developed woodland, colonizing a canal embankment, has been investigated. Nitric-acid-extractable metal concentrations in the sediment-derived substrate ranged between 5.0 to 376 mg kg(-1)dry wt. Cd and 83.0 to 784 mg kg(-1)dry wt. Zn. The woodland is dominated by Willow (Salix) species. Salix caprea selectively accumulated Cd in all stem tissues, in contrast to S. viminalis, which regulated tissue Cd content. Both species showed an effective regulation of tissue Zn. Cadmium uptake by S. caprea was correlated with differences in soil pH, while Zn uptake was not. There was no relationship between tissue metal concentrations and soil metal nitric acid-extractable concentrations. Other aspects of ecosystem function appeared unaffected by the elevated Cd flux in S. caprea; leaf litter organisms present represented all major groups and there was no accumulation of organic matter. The woodland represents a potentially sustainable option for remediating a low value site with difficult access that does not involve removal of the contaminated material to a landfill or making a permanent inert cover.  相似文献   

14.
对多年利用矿山废水灌溉的水稻土中Pb的化学形态、植物有效态和动物/人有效态进行了分析研究。结果表明,土壤中Pb的碳酸盐结合态、可交换态、有机结合态和Fe-Mn氧化物结合态含量分别是363、338、185和155mg/kg,其总和占总Pb含量的72.70%,表明其较高的环境敏感性;动物/人有效态Pb含量为1085mg/kg。土壤有机态Pb与植物中Pb含量相关性最高,表明用有机态表征土壤Pb的植物有效态比惯常使用的DTPA态要好。植物有效态与动物/人有效态含量相比,前者为后者的17.05%,表明土壤Pb污染对当地动物/人的潜在生态危害远远大于水稻等农作物;Fe-Mn氧化物结合态Pb与植物有效态(即有机结合态)及动物/人有效态Pb相关性最好,表明该形态对土壤Pb的生物有效性具有积极作用。  相似文献   

15.
This paper examines the potential value of phosphate solubilizing bacteria (Enterobacter cloacae) in the dissolution of rock phosphate (RP) and subsequent immobilization of lead (Pb) in both bacterial growth medium and soils. Enterobacter sp. showed resistance to Pb and the bacterium solubilized 17.5% of RP in the growth medium. Enterobacter sp. did not enhance Pb immobilization in solution because of acidification of bacterial medium, thereby inhibiting the formation of P-induced Pb precipitation. However, in the case of soil, Enterobacter sp. increased Pb immobilization by 6.98, 25.6 and 32.0% with the RP level of 200, 800 and 1600 mg P/kg, respectively. The immobilization of Pb in Pb-spiked soils was attributed to pyromorphite formation as indicated by XRD analysis. Inoculation of phosphate solubilizing bacteria with RP in soil can be used as an alternative technique to soluble P compounds which can cause eutrophication of surface water.  相似文献   

16.
Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows.  相似文献   

17.
Heavy metal pollution of soil is of concern for human health and ecosystem function. The soil microbial community should be a sensitive indicator of metal contamination effects on bioavailability and biogeochemical processes. Simple methods are needed to determine the degree of in situ pollution and effectiveness of remediating metal-contaminated soils. Currently, phospholipid-linked fatty acids (PLFAs) are preferred for microbial profiling but this method is time consuming, whereas direct soil extraction and transesterification of total ester-linked fatty acids (ELFAs) is attractive because of its simplicity. The 1998 mining acid-metal spill of >4000 ha in the Guadiamar watershed (southwestern Spain) provided a unique opportunity to study these two microbial lipid profiling methods. Replicated treatments were set up as nonpolluted, heavy metal polluted and reclaimed, and polluted soils. Inferences from whole community-diversity analysis and correlations of individual fatty acids with metals suggested Cu, Cd, and Zn were the most important in affecting microbial community structure, along with pH. The microbial stress marker, monounsaturated fatty acids, was significantly lower for reclaimed and polluted soil over nonpolluted soils for both PLFA and ELFA extraction. Another stress marker, the monounsaturated to saturated fatty acids ratio, only showed this for the PLFA. The general fungal marker (18:2omega6c), the arbuscule mycorrhizae marker (16:1omega5c), and iso- and anteiso-branched PLFAs (gram positive bacteria) were suppressed with increasing pollution whereas 17:0cy (gram negative bacteria) increased with metal pollution. For both extraction methods, richness and diversity were greater in nonpolluted soils and lowest in polluted soils. The ELFA method was sensitive for reflecting metal pollution on microbial communities and could be suitable for routine use in ecological monitoring and risk assessment programs because of its simplicity and reproducibility.  相似文献   

18.
Two water treatment sludges (WTS-A, WTS-B), two red muds (RM), and red gypsum (RG), all rich in iron oxy-hydroxides, were added to a soil highly polluted with As and Cu at 2% (w/w) to reduce metal bioavailability. Because the amendments increased soil pH to approximately 6, a lime treatment to the same pH and an unamended treatment were included for comparison. All the amendments had significant positive effects on the soil microbial biomass and growth of ryegrass (Lolium multiflorum Lam. cv. Avance), but only WTS-A improved lettuce (Lactuca sativa L. cv. Tom Thumb) growth. The mineralization of added ammonium nitrogen was not significantly affected by the treatments, while a physiologically based extraction test (PBET) showed that bioaccessibility of As was low (< 5%) and decreased only in the WTS-A treatment. Concentrations of As in soil pore water and extractable As only decreased in the WTS and RG treatments. In contrast, Cu concentrations in soil pore water and extractable Cu decreased in all treatments, by more than 84% in the WTS, RM, and RG treatments. Non-isotopically exchangeable As and Cu were present in colloids in the soil pore water. Untreated soil had < 4% isotopically exchangeable As and this decreased by approximately 50%, with WTS, RM, and RG. The labile Cu pool represented a large proportion (34%) of the total Cu pool, and the isotopically exchangeable and soluble Cu were strongly correlated with soil pH. Acidification of the treated soils showed that the labile As and Cu both increased in the treated soils compared with untreated soils. The significance of the treatment effects on soil fertility and potential off-site transport of As and Cu to ground water are discussed.  相似文献   

19.
Phosphate rock (PR) and phosphoric acid (PA) are an effective combination of P sources for immobilizing Pb in contaminated soils. This column experiment examined the effectiveness of different application methods on Pb immobilization in a contaminated soil. Phosphate was applied at a P/Pb molar ratio of 4 with half as PR and half PA. While PR was mixed with the soil or placed as a layer, aqueous PA was applied from the top of the column as one or two applications. After 4 wk of incubation, total and soluble Pb and P, TCLP-Pb (toxicity characteristic leaching procedure) and PBET-Pb (physiologically-based extraction test) in the P-treated soil were determined. Phosphate addition effectively reduced leachable Pb to below the EPA drinking water standard of 15 microg L(-1) in all treatments. Mixing both PA and PR with the soil was the most effective method in Pb immobilization, reducing TCLP-Pb by up to 95% and PBET-Pb by 25 to 42%. Application of PR as a layer in the soil column was the most effective in reducing Pb migration (by 73-79%) and minimizing soil acidification and P entrophication, potential drawbacks of PA. Applying PA in two applications was less effective than one application. Mixing PR and PA with the soil plus placing PR as a layer can be employed for effective remediation of Pb-contaminated soils, reducing Pb leachability, bioavailability, and mobility while minimizing soil acidification and P entrophication.  相似文献   

20.
Soil amendments can immobilize metals in soils, reducing the risks of metal exposure and associated impacts to flora, fauna and human health. In this study, soil amendments were compared, based on "closed system" water extracts, for reducing metal mobility in metal-contaminated soil from the Broken Hill mining center, Australia. Phosphatefertilizer (bovine bone meal, superphosphate, triple superphosphate, potassium orthophosphate) and pine bark (Pinus radiata) were applied to two soils (BH1, BH2) contaminated with mining waste. Both soils had near neutral to alkaline pH values, were sulfide- or sulfate-rich, and contained metal and metalloid at concentrations that pose high environmental risks (e.g., Pb = 1.25 wt% and 0.55 wt%, Zn = 0.71 wt% and 0.47 wt% for BH1 and BH2, respectively). The addition of fertilizers and/or pine bark to both soil types increased water extractable metals and metalloids concentrations (As, Cd, Cu, Fe, Mn, Pb, Sb, Zn) compared with nonamended soils. One or more of the elements As, Cd, Cu, Mn, Pb, and Zn increased significantly in extracts of a range of different soil+pine bark and soil+fertilizer+piner+pine bark tests in response to increased pine bark doses. By contrast, Fe and Sb concentrations in extracts did not change significantly with pine bark addition. Solution pH was decreased by phosphate fertilizers (except for bovine bone meal) and pine bark, and pine bark enhanced dissolved organic carbon. At least in the short-term, the application of phosphate fertilizers and pine bark proved to be an ineffective method for controlling metal and metalloid mobility in soils that contain admixtures of polymetallic, polymineralic mine wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号