首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.  相似文献   

2.
A multiple linear regression model was applied to aerosol chemical data from New York City to determine the sources of carbonaceous aerosol. The model used elemental tracers for auto exhaust aerosol (Pb), residual oil combustion (V), resuspended dust (Mn or Fe), and incineration (Cu or Zn). Although relative uncertainties in the source apportionment were greater than 20%, auto exhaust was found to be the main source of organic carbon with lesser contributions from other sources. A substantial fraction of elemental carbon could not be associated with the sources used in the model and was possibly associated with the combustion of diesel and distillate oils. The regression coefficients, which are related to source composition, compared well with actual measured source compositions. Because of the uncertainties it was concluded that source apportionment, especially as it relates to the development of control strategies, should utilize the results of several receptor and source models where possible.  相似文献   

3.
A source apportionment study was conducted at two rural locations, Potsdam and Stockton, to assess the in-state/out-of-state sources of PM2.5 and Hg in New York State. At both locations, samples were collected between November 2002 and August 2005 and analyzed for fine PM mass and its chemical constituents. The measured chemical constituents included elements, cations, anions, organic and elemental carbon (OC and EC), black carbon (BC), and water-soluble short-chain (WSSC) organic acids. Positive matrix factorization (PMF) was applied to the measured concentrations and eight and seven factors were resolved at Potsdam and Stockton, respectively. Four factors were resolved in common between the two locations including secondary sulfate, secondary nitrate, secondary OC, and a crustal factor. The factor profiles of mixed industrial and motor vehicle factors resolved at Potsdam were different compared with the corresponding profiles for these factors at Stockton. A resuspended road salt factor was identified at Potsdam, while an aged sea salt factor was identified at Stockton. At Potsdam, a wood smoke factor was also resolved. Among the resolved factors, secondary sulfate was the highest contributor to the measured mass at both sites. Potential source contribution function (PSCF) analysis indicated the Ohio River Valley region as a common potential source region for this factor at both locations. For the secondary nitrate factor, at Potsdam PSCF analysis indicated the Midwestern US (NOx emissions), and the US farm belt (ammonia emissions) as potential source regions, while at Stockton, the Midwestern US (power plant NOx emissions) was indicated as a major potential source region.  相似文献   

4.
The samples of total suspended particle (TSP) from sources and TSP in the ambient atmosphere were collected in 2006 at Tianjin, People's Republic of China and analyzed for 16 chemical elements, two water-soluble ions, total carbon, and organic carbon. On the basis of the chemical mass balance (CMB) model, the contributions of different TSP sources to the ambient TSP were identified. The results showed that resuspended dust has the biggest contributions to the concentration of ambient TSP. The buffering capacity of each TSP source was also determined by an analytical chemistry method, and the result showed that the constructive dust (the dust emitted from construction work) had the strongest buffering capacity among the measured sources, whereas the coal combustion dust had the weakest buffering capacity. A calculation formula of the source of buffering capacity of ambient TSP was developed based on the result of TSP source apportionment and the identification of the buffering capacity of each TSP source in this study. The results of the source apportionment of the buffering capacity of ambient TSP indicated that open sources (including soil dust, resuspended dust, and constructive dust) were the dominant sources of the buffering capacity of the ambient TSP. Acid rain pollution in cities in Northern China might become serious with a decrease of open source pollution without reducing acidic sources. More efforts must be made to evaluate this potential risk, and countermeasures should be proposed as early as possible.  相似文献   

5.
Semi-continuous and 24-h averaged measurements of fine carbonaceous aerosols were made concurrently at three sites within each of two U.S. Midwestern Cities; Detroit, Michigan and Cleveland, Ohio; during two, one-month intensive campaigns conducted in July of 2007 and January & February of 2008. A comparison of 24-h measurements revealed substantial intra-urban variability in carbonaceous aerosols consistent with the influence of local sources, and excesses in both PM2.5 organic carbon (OC) and elemental carbon (EC) were identified at individual sites within each city. High time-resolved black carbon (BC) measurements indicated that elemental carbon concentrations were higher at sites adjacent to freeways and busy surface streets, and temporal patterns suggested that excess EC at sites adjacent to freeways was dominated by mobile source emissions while excesses in EC away from traffic corridors was dominated by point/area source emissions. The site-to-site variability in OC concentrations was approximately 7% within the neighborhood scale (0.5–4 km) and between 4 and 27% at the urban scale (4–100 km). In contrast, measurements of organic source tracers, in conjunction with a Chemical Mass Balance (CMB) source-apportionment model, indicated that the spatial variation in the contribution of both mobile and stationary sources to PM2.5 OC often exceeded the variation in OC mass concentration by a factor of 3 or more. Markers for mobile sources, biomass smoke, natural gas, and coal combustion differed by as much as 60% within the neighborhood scale and by greater than 200% within the urban scale. The observations made during this study suggest that the urban excess of carbonaceous aerosols is much more complex than has been previously reported and that a more rigorous, source-oriented approach should be taken in order to assess the risk associated with exposure to carbonaceous aerosols within the industrialized environments of the Midwestern United States.  相似文献   

6.
Monthly average ambient concentrations of more than eighty particle-phase organic compounds, as well as total organic carbon (OC) and elemental carbon (EC), were measured from March 2004 through February 2005 in five cities in the Midwestern United States. A multi-variant source apportionment receptor model, positive matrix factorization (PMF), was applied to explore the average source contributions to the five sampling sites using molecular markers for primary and secondary organic aerosols (POA, SOA). Using the molecular makers in the model, POA and SOA were estimated for each month at each site. Three POA factors were derived, which were dominated by primary molecular markers such as EC, hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs), and which represented the following POA sources: urban primary sources, mobile sources, and other combustion sources. The three POA sources accounted for 57% of total average ambient OC. Three factors, characterized by the presence of reaction products of isoprene, α-pinene and β-caryophyllene, and displaying distinct seasonal trends, were consistent with the characteristics of SOA. The SOA factors made up 43% of the total average measured OC. The PMF-derived results are in good agreement with estimated SOA concentrations obtained from SOA to tracer yield estimates obtained from smog chamber experiments. A linear regression comparing the smog chamber yield estimates and the PMF SOA contributions had a regression slope of 1.01 ± 0.07 and an intercept of 0.19 ± 0.10 μg OC m?3 (adjusted R2 of 0.763, n = 58).  相似文献   

7.
A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston–Galveston Bay (HGB) and Beaumont–Port Arthur (BPA) areas were determined.The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS).The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary.Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.  相似文献   

8.
Particulate matter (PM) less than 2.5 microm in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

9.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

10.
Airborne fine particulate matter (PM2.5) has been collected at two sites in the West Midlands conurbation, UK, representing urban background and rural locations. Chemical analyses have been carried out for major anions, trace metals, total OC and EC, and for individual organic marker species including n-alkanes, hopanes, PAHs, organic acids and sterols. Source apportionment has been conducted using both a pragmatic mass closure model and the US EPA chemical mass balance (CMB) model. The pragmatic mass closure model is well able to account for the measured PM2.5 mass in terms of chemical/source components, and the chemical mass balance model has been used to apportion the carbonaceous component of the aerosol. The dominant components of PM2.5 at both sites are secondary inorganic (sulphate and nitrate) and carbonaceous particles. The CMB model shows the latter to arise mainly from road traffic sources, with smaller contributions from vegetative detritus, wood smoke, natural gas, coal, and dust/soil. The CMB model also identifies an important component of the organic aerosol not associated with these primary sources, which correlates very strongly with secondary organic aerosol estimated from the OC/EC ratio. The split between different automotive source types does not relate well to UK emission inventories, and may indicate that CMB source profiles from North American studies and different carbon analysis protocols may lead to erroneous conclusions.  相似文献   

11.
Mobile sources are significant contributors to ambient PM2.5, accounting for 50% or more of the total observed levels in some locations. One of the important methods for resolving the mobile source contribution is through chemical mass balance (CMB) receptor modeling. CMB requires chemically speciated source profiles with known uncertainty to ensure accurate source contribution estimates. Mobile source PM profiles are available from various sources and are generally in the form of weight fraction by chemical species. The weight fraction format is commonly used, since it is required for input into the CMB receptor model. This paper examines the similarities and differences in mobile source PM2.5 profiles that contain data for elements, ions, elemental carbon (EC) and organic carbon (OC), and in some cases speciated organics (e.g., polycyclic aromatic hydrocarbons [PAHs]), drawn from four different sources. Notable characteristics of the mass fraction data include variability (relative contributions of elements and ions) among supposedly similar sources and a wide range of average EC:OC ratios (0.60 +/- 0.53 to 1.42 +/- 2.99) for light-duty gasoline vehicles (LDGVs), indicating significant EC emissions from LDGVs in some cases. For diesel vehicles, average EC:OC ratios range from 1.09 +/- 2.66 to 3.54 +/- 3.07. That different populations of the same class of emitters can show considerable variability suggests caution should be exercised when selecting and using profiles in source apportionment studies.  相似文献   

12.
ABSTRACT

Mobile sources are significant contributors to ambient PM2 5, accounting for 50% or more of the total observed levels in some locations. One of the important methods for resolving the mobile source contribution is through chemical mass balance (CMB) receptor modeling. CMB requires chemically speciated source profiles with known uncertainty to ensure accurate source contribution estimates. Mobile source PM profiles are available from various sources and are generally in the form of weight fraction by chemical species. The weight fraction format is commonly used, since it is required for input into the CMB receptor model. This paper examines the similarities and differences in mobile source PM2.5 profiles that contain data for elements, ions, elemental carbon (EC) and organic carbon (OC), and in some cases speciated organics (e.g., polycyclic aromatic hydrocarbons [PAHs]), drawn from four different sources.

Notable characteristics of the mass fraction data include variability (relative contributions of elements and ions) among supposedly similar sources and a wide range of average EC:OC ratios (0.60 ± 0.53 to 1.42 ± 2.99) for light-duty gasoline vehicles (LDGVs), indicating significant EC emissions from LDGVs in some cases. For diesel vehicles, average EC:OC ratios range from 1.09 ± 2.66 to 3.54 ± 3.07. That different populations of the same class of emitters can show considerable variability suggests caution should be exercised when selecting and using profiles in source apportionment studies.  相似文献   

13.
Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.  相似文献   

14.
ABSTRACT

To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2 5 particles collected in the Sihwa area.

The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

15.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   

16.
This paper presents chemical mass balance (CMB) analysis of organic molecular marker data to investigate the sources of organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. The model accounts for emissions from eight primary source classes, including major anthropogenic sources such as motor vehicles, cooking, and biomass combustion as well as some primary biogenic emissions (leaf abrasion products). We consider uncertainty associated with selection of source profiles, selection of fitting species, sampling artifacts, photochemical aging, and unknown sources. In the context of the overall organic carbon (OC) mass balance, the contributions of diesel, wood-smoke, vegetative detritus, road dust, and coke-oven emissions are all small and well constrained; however, estimates for the contributions of gasoline-vehicle and cooking emissions can vary by an order of magnitude. A best-estimate solution is presented that represents the vast majority of our CMB results; it indicates that primary OC only contributes 27±8% and 50±14% (average±standard deviation of daily estimates) of the ambient OC in the summer and winter, respectively. Approximately two-thirds of the primary OC is transported into Pittsburgh as part of the regional air mass. The ambient OC that is not apportioned by the CMB model is well correlated with secondary organic aerosol (SOA) estimates based on the EC-tracer method and ambient concentrations of organic species associated with SOA. Therefore, SOA appears to be the major component of OC, not only in summer, but potentially in all seasons. Primary OC dominates the OC mass balance on a small number of nonsummer days with high OC concentrations; these events are associated with specific meteorological conditions such as local inversions. Primary particulate emissions only contribute a small fraction of the ambient fine-particle mass, especially in the summer.  相似文献   

17.
The US. Department of Energy Gasoline/Diesel PM Split Study was conducted to assess the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the relative contributions of emissions from gasoline (or spark ignition [SI]) and diesel (or compression ignition [CI]) engines to ambient concentrations of fine particulate matter (PM2.5) in California's South Coast Air Basin (SOCAB). In this study, several groups worked cooperatively on source and ambient sample collection and quality assurance aspects of the study but worked independently to perform chemical analysis and source apportionment. Ambient sampling included daily 24-hr PM2.5 samples at two air quality-monitoring stations, several regional urban locations, and along freeway routes and surface streets with varying proportions of automobile and truck traffic. Diesel exhaust was the dominant source of total carbon (TC) and elemental carbon (EC) at the Azusa and downtown Los Angeles, CA, monitoring sites, but samples from the central part of the air basin showed nearly equal apportionments of CI and SI. CI apportionments to TC were mainly dependent on EC, which was sensitive to the analytical method used. Weekday contributions of CI exhaust were higher for Interagency Monitoring of Protected Visual Environments (IMPROVE; 41+/-3.7%) than Speciation Trends Network (32+/-2.4%). EC had little effect on SI apportionment. SI apportionments were most sensitive to higher molecular weight polycyclic aromatic hydrocarbons (indeno[123-cd]pyrene, benzo(ghi)perylene, and coronene) and several steranes and hopanes, which were associated mainly with high emitters. Apportionments were also sensitive to choice of source profiles. CI contributions varied from 30% to 60% of TC when using individual source profiles rather than the composites used in the final apportionments. The apportionment of SI vehicles varied from 1% to 12% of TC depending on the specific profile that was used. Up to 70% of organic carbon (OC) in the ambient samples collected at the two fixed monitoring sites could not be apportioned to directly emitted PM emissions.  相似文献   

18.
Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 μg/m3 and 6.0 μg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter.

Implications: Fine particle concentrations in Dhaka, Bangladesh, are very high and cause significant degradation of urban visibility. This work shows that using carbon fraction data from the IMPROVE OC/EC protocol provides improved source apportionment. Soil dust, brick kiln, diesel, gasoline, and the Pb sources contribute strongly to haze, particularly in the winter.  相似文献   

19.
This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33 % by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70 % (PCA-MLRA) and 67 % (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.  相似文献   

20.
High-volume PM2.5 samples were collected at Summit, Greenland for approximately six months from late May through December of 2006. Filters were composited and analyzed for source tracer compounds. The individual organic compounds measured at Summit are orders of magnitude smaller than concentrations measured at other sites, including locations representative of remote oceanic, and remote and urban continental aerosol. The measured tracers were used to quantify the contribution of biomass burning (0.6–0.9 ng C m?3), vegetative detritus (0.3–0.9 ng C m?3), and fossil fuel combustion (0.1–0.8 ng C m?3) sources, 4% of OC total, to atmospheric organic carbon concentrations at the remote location of Summit, Greenland. The unapportioned organic carbon (96%) during the early summer period correlates well with the fraction of water soluble organic carbon, indicating secondary organic aerosol as a large source of organic carbon, supported by the active photochemistry occurring at Summit. To the author's knowledge, this paper represents the first source apportionment results for the polar free troposphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号