首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study attempted to estimate the amount of ethylene emitted into the atmosphere from natural and anthropogenic sources and to determine the fate of atmospheric ethylene. The total emission from the global surface was estimated to be 18–45 × 106 t y−1, of which 74% was released from natural sources and 26% from the anthropogenic sources. Releases from the terrestial and aquatic ecosystems comprised 89 and 11% of the natural emissions, respectively. Biomass burning in terrestial ecosystems to clear land for agriculture was the largest anthropogenic source (77%); the combustion of various fossil fuels amounts to only a small fraction (21%) of anthropogenic emissions. The relative amounts of ethylene destroyed by reactions with OH radical and O3 in the troposphere were estimated to be 89 and 8%, respectively. The remaining 3% of the atmospheric ethylene was transported into the stratosphere. The atmospheric lifetime of ethylene was estimated to be between 2 and 4 days. We discuss the possibility that degradation by bacteria in the soil is a sink of atmospheric ethylene. The physiological effects of elevated ethylene concentrations on plants because of large-scale destruction of the terrestial ecosystem by forest fires is also discussed.  相似文献   

2.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


3.
Wang X  Sato T  Xing B 《Chemosphere》2006,65(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

4.
Anderson DR  Fisher R 《Chemosphere》2002,46(3):371-381
Several countries have compiled national inventories of dioxin (polychlorinated dibenzo-p-dioxin [PCDD] and polychlorinated dibenzofuran [PCDF]) releases that detail annual mass emission estimates for regulated sources. High temperature processes, such as commercial waste incineration and iron ore sintering used in the production of iron and steel, have been identified as point sources of dioxins. Other important releases of dioxins are from various diffuse sources such as bonfire burning and domestic heating. The PCDD/F inventory for emissions to air in the UK has decreased significantly from 1995 to 1998 because of reduced emissions from waste incinerators which now generally operate at waste gas stack emissions of 1 ng I-TEQ/Nm3 or below. The iron ore sintering process is the only noteworthy source of PCDD/Fs at integrated iron and steelworks operated by Corus (formerly British Steel plc) in the UK. The mean waste gas stack PCDD/F concentration for this process is 1,2 ng I-TEQ/Nm3 based on 94 measurements and it has been estimated that this results in an annual mass release of approximately 38 g I-TEQ per annum. Diffuse sources now form a major contribution to the UK inventory as PCDD/Fs from regulated sources have decreased, for example, the annual celebration of Bonfire Night on 5th November in the UK causes an estimated release of 30 g I-TEQ, similar to that emitted by five sinter plants in the UK.  相似文献   

5.
《Chemosphere》1996,33(1):159-176
This paper provides the first time series estimates of global anthropogenic methane emissions from the mid-19th century to the present. Our purpose is to provide time series estimates of anthropogenic methane emissions for global climate models estimated or calibrated using historical time series data. Previous estimates of methane emissions include “top-down” (deconvolution) estimates of total emissions, estimates of global anthropogenic emissions for the 16th century, and various estimates of anthropogenic and natural emissions in the 1980s and 1990s. This study uses previously published point estimates for the 16th century and the 1980s and early 1990s and a variety of historical time series of proxy variables to estimate a time series of global anthropogenic methane emissions. We find that anthropogenic methane emissions have increased from about 80 million tonnes per annum in 1860 to about 380 million tonnes in 1990. The relative importance of various emission sources changes over time. The rate of increase now may be slowing. A comparison with the estimates generated by Khalil and Rasmussen suggests that natural sources of methane have declined over the period. There are, however, great uncertainties in these estimates which future research may be able to reduce.  相似文献   

6.
Current atmospheric emissions of As, Cd, Cr, Ni, and Pb (reference year 2000) from major anthropogenic sources in Europe are presented in this paper. Combustion of fuels in stationary sources was the main emission source for As, Cd, Cr, and Ni (more than a half of the total anthropogenic emissions), while combustion of gasoline was the main source of for lead. There is a continuous reduction of heavy metal emissions in Europe during the last 40 years. Better knowledge of heavy metal sources, emissions, pathways, and fate in the environment, and progress in developing efficient emission control equipment has resulted in more efficient regulatory efforts to curb heavy metal emissions from anthropogenic sources very substantially. There is a potential for further reduction of these emissions until the year 2010 up to about 40% for As, Cd, Cr, and Ni and about 57% for Pb, as estimated within various emission scenarios presented in the paper.  相似文献   

7.
Effects of atmospheric ammonia on vegetation--a review   总被引:12,自引:0,他引:12  
Atmospheric ammonia does not only cause acute injuries at vegetation close to the source, but significantly contributes to large scale nitrogen eutrophication and acidification of ecosystems because the amount of sources is high and after conversion to ammonium it can reach remote areas by long-range atmospheric transport. Besides having acute toxic potential, NH(3) and NH(4)(+) (= NH(y)) may disturb vegetation by secondary metabolic changes due to increased NH(y) uptake and assimilation leading to higher susceptibility to abiotic (drought, frost) and biotic (pests) stress. Prevention of damage to natural and semi-natural ecosystems will only be achieved if NH(3) emissions are drastically reduced. In this paper, the current knowledge on NH(y) emission, deposition, and its effects on vegetation and ecosystems are reviewed. Critical levels and critical loads for nitrogen deposition are discussed.  相似文献   

8.
Mercury emissions concentrations, emission factors, and the total national emission from major anthropogenic sources in Korea for the year 2007 were estimated. Uncontrolled and controlled mercury emission factors and the total emission from each source types are presented. The annual national mercury emission from major anthropogenic sources for the year 2007, on average was 12.8 ton which ranged from 6.5 to 20.2 ton. Averaged emissions of elemental, oxidized, and particulate mercury were estimated at 8.25 ton, 3.69 ton, and 0.87 ton, respectively. Due to the removal of a major portion of particulate and oxidized mercury species, elemental mercury was dominant in stack emission. About 54.8% of mercury emission was contributed by industrial sources, 45.0% by stationary combustion sources and 0.02% by mobile sources. Thermal power plants, oil refineries, cement kilns and incinerators (municipal, industrial, medical, sewage sludge) were the major mercury emitters, contributing about 26%, 25%, 21% and 20%, respectively to the total mercury emission. Other sources (crematory, pulp and paper manufacturing, nonferrous metals manufacturing, glass manufacturing) contributed about 8% of the total emission. Priority should be given in controlling mercury emissions from coal-fired power plants, oil refineries, cement kilns and waste incinerators. More measurements including natural and re-emission sources are to be carried out in the future in order to have a clear scenario of mercury emission from the country and to apply effective control measures.  相似文献   

9.
Estimates of emissions of SO2, NOx, HCl and NH3 have been made for a densely populated region of the UK, the North-West of England, using data on power generation, incinerator plant capacity, fuel usage and animal and human population statistics. The spatial distributions of SO2 and NOx emissions are quite different, reflecting their different source strengths. The emissions from motor vehicles make up 52% of the NOx emissions from the North-West of England, whilst those from fossil-fuel-fired power stations make up 20%. The emissions of fossil-fuel-fired power stations make up 58% of SO2 emissions from the North-West. A large fossil-fuel-fired power station is the largest known point source for emissions of SO2, NOx and HCl. The largest contribution to NH3 emissions in the North-West is from cattle. Humans may contribute some NH3 to overall emissions but there is considerable uncertainty as to how much is emitted and what fraction of this is deposited within buildings. The uncertainties in the methodologies used are high-lighted and, where possible, recommendations are made as to how future emissions estimates might be improved. Potential reductions in emissions of SO2, NOx and HCl are discussed under basic scenarios of planned power station closures in the area and the compliance of the electricity generation industry with the European Community Directive on Large Combustion Plants.  相似文献   

10.
Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002 to 2006, policy actions have led to decreases in NO(x) emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates that these emissions reductions have led to a downward trend in ambient measurements of transported reactive nitrogen, especially atmospheric concentrations and wet deposition of nitrate. The trend in reduced nitrogen, namely ammonium, is ambiguous. As reduced nitrogen becomes a larger fraction of the reactive nitrogen budget, wide-spread NH(3) measurements and improved NH(3) emissions assessments are a critical need.  相似文献   

11.
Fowler D  Muller J  Smith RI  Cape JN  Erisman JW 《Ambio》2005,34(1):41-46
The relationship between emissions and deposition of air pollutants, both spatially and in time forms an important focus for science and for policy makers. In practice, this relationship may become nonlinear if the underlying processes change with time, or in space. Nonlinearities may also appear due to errors in emission or deposition data, and careful scrutiny of both data sources and their relationship provides a means of picking up such deficiencies. Nonlinearities in source receptor relationships for sulfur and nitrogen compounds in Europe have been identified in measurement data for the UK. In the case of sulfur, the dry deposition process has been shown to be strongly influenced by ambient concentrations of NH3, leading to substantial increases in deposition rate as SO2 concentrations decline and the ratio SO2/NH3 decreases. The field evidence extends to measurements over three different surfaces in three countries across Europe. A mechanistic understanding of the cause of this nonlinearity has been provided. Apparent nonlinearities also exist in the sulfur deposition field through the influence of shipping emissions. The effect is clear at west coast locations, where during a period in which land-based sulfur emissions declined by 50%, no significant decline in concentrations of SO(2-) in precipitation were observed. The sites affected are primarily the coastal regions of southwestern UK, where shipping sources contribute a substantial fraction of the deposited sulfur, but the effect is not detectable elsewhere. Full quantification of the spatially disaggregated emission and their changes in time will eliminate this apparent nonlinearity in the source-receptor data. For oxidized nitrogen emission and deposition in the UK, there is strong evidence of nonlinearity in the source-receptor relationship. The concentrations and deposition of NO(3-) in precipitation have declined little following a reduction in emissions of 45% during the period 1987 to 2001. The data imply a significant decrease in the average transport distance for oxidized nitrogen and most probably an increase in the average oxidation rate. However, the net effect of changes in aerosol chemistry due to changes in sulfur emissions and less competition for the main oxidants as a consequence of reductions in sulfur emission have not been separated. A quantitative explanation of the cause of this nonlinearity is lacking and the effects are therefore identified as an important uncertainty for the development of further protocols to control acidification, eutrophication and photochemical oxidants in Europe.  相似文献   

12.
Considerable effort has been expended in the UK and elsewhere to quantify and rank PCDD/F primary sources and emissions to the environment, principally the atmosphere, so that cost-effective source reduction measures can be taken. Here, we predict a congener-specific emissions inventory for primary and secondary nondioxin-regulated sources to the UK atmosphere, estimated to have ranged from 3 to 22 kg in 1996. The inventory profile is dominated by OCDD (approximately 30-40%), 1,2,3,4,6,7,8-HpCDD (approximately 15-19%) and 1,2,3,4,6,7,8-HpCDF (approximately 14-19%). Congeners 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD dominate the sigmaTEQ composition. Mass balance modelling suggests that the predicted congener pattern in UK air (based on the emission inventory) is similar to observed measurements, with absolute concentrations being estimated within a factor of 2 for most congeners. Calculations taking into account atmospheric weathering processes and long range (advective) transport suggest that PCDD/F sources to ambient air are primarily ongoing and that atmospheric mixing will mask individual emission source profiles/identities. This supports measured evidence for the consistency of PCDD/F air profiles observed around the UK throughout the year.  相似文献   

13.
《Chemosphere》2007,66(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

14.
Geologic emissions of methane to the atmosphere   总被引:6,自引:0,他引:6  
Etiope G  Klusman RW 《Chemosphere》2002,49(8):777-789
The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.  相似文献   

15.
There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy. A protocol using flux chambers (FCs) was used to determine these NH3 emissions from the open-lot dairy. NH3 concentration measurements were made using chemiluminescence-based analyzers. The ground-level area sources (GLAS) including open lots (cows on earthen corrals), separated solids, primary and secondary lagoons, and milking parlors were sampled to estimate NH3 emissions. The seasonal NH3 EFs were 11.6 +/- 7.1 kg-NH3 yr(-1)head(-1) for the summer and 6.2 +/- 3.7 kg-NH3 yr(-1)head(-1) for the winter season. The estimated annual NH3 EF was 9.4 +/- 5.7 kg-NH3 yr(-1)head(-1) for this open-lot dairy. The estimated NH3 EF for winter was nearly 47% lower than summer EF. Primary and secondary lagoons (approximately 37) and open-lot corrals (approximately 63%) in summer, and open-lot corrals (approximately 95%) in winter were the highest contributors to NH3 emissions for the open-lot dairy. These EF estimates using the FC protocol and real-time analyzer were lower than many previously reported EFs estimated based on nitrogen mass balance and nitrogen content in manure. The difference between the overall emissions from each season was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH3 emission from the open-lot earthen corrals due to variable animal density within feeding and shaded and dry divisions of the open lot. This spatial variability was attributed to dispirit manure loading within these areas.  相似文献   

16.
The rate of deposition of elements at a point on the earth's surface can change, quite dramatically, even on relatively short time-scales, as a function of weather patterns. On a global scale volcanoes (and more rarely large meteors) can overwhelm steadier sources of trace elements. In recent centuries human activities have increased emissions to the atmosphere to a point where they are above those of natural sources for some of the rarer elements. On a longer time-scale climate change can also alter the deposition of elements, although such changes are often slower than those brought about through anthropogenic emissions. Changes in climate can also alter the distribution of deposition, but there are few studies estimating such changes. This paper uses estimates of the balance of natural and anthropogenic sources of a range of elements to examine the likely variation in deposition at the earth's surface. It particularly focuses on those elements regarded as toxic, whose concentrations seem likely to go on increasing in industrial areas.  相似文献   

17.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

18.
This paper reports a desk study to quantify the total-nitrogen (N) and ammoniacal-N contents of livestock excreta, and to compare them with estimates of N losses to the environment from that excreta. Inventories of ammonia (NH3), nitrous oxide (N2O), dinitrogen (N2), and nitric oxide emissions (NO), together with estimates of nitrate (NO3-) leaching and crop N uptake were collated. A balance sheet was constructed to determine whether our estimates of N in livestock excreta were consistent with current estimates of N losses and crop N uptake from that N, or whether emissions of N compounds from livestock excreta may have been underestimated. Total N excretion by livestock in England and Wales (E&W) was estimated as 767-816 x 10(3) t of which 487-518 x 10(3) t was estimated to be total ammoniacal-N (TAN). Estimates of NH3 and N2O losses during housing and storage were derived from the difference between the total amount of TAN in excreta deposited in and around buildings, and the total amount of TAN in manure (i.e. the excreta deposited in and around buildings after collection and storage) prior to spreading and were ca. 64-88 x 10(3) t. The NH3-N emission from livestock buildings and manure storage in E&W quoted in the UK Emission Inventory (Pain et al., 1999. Inventory of Ammonia Emission from UK Agriculture, 1977. Report of MAFF contract WAO630, IGER, North Wyke) is ca. 80 x 10(3) t. Losses from NO3- leaching in the season after manure application and grazing were estimated as 73 and 32 x 10(3) t, respectively. Other gaseous losses of N were estimated as ca. 54 x 10(3) t. Crop uptake of manure N was estimated to be between 7 and 24 x 10(3) t. For manures, estimated N losses, immobilization and crop uptake total 326 x 10(3) t compared with estimates of 293-319 x 10(3) t TAN in excreta. Total N losses and crop uptake from TAN deposited at grazing were estimated to be 179-199 x 10(3) t compared with ca. 224 x 10(3) t TAN excreted. Thus all the TAN in manures appears to be accounted for, but ca. 25-45 x 10(3) t of TAN in urine deposited at grazing were not, and could be an underestimated source of gaseous emission or nitrate leaching.  相似文献   

19.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

20.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号