首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As a result of the Chernobyl accident, some regions of Belarus have been contaminated with the plutonium isotopes (238,239,240,241)Pu. Considering the importance of the environmental impact of the alpha-emitting radionuclides we have carried out a prognostic estimation of the area contaminated with (238,239,240)Pu and (241)Am (the latter being a decay product of (241)Pu) in Belarus. The calculations were made using measurements of (238,239,240)Pu activity concentrations in soil samples from about 600 settlements in the affected region, together with the estimated activity ratio A((241)Am)/A((238,239,240)Pu). The area contaminated with alpha-emitting transuranium isotopes predicted for the year 2006 has been compared with that estimated for 1986. The results show that by 2006, the area of inhabited districts where contamination with (238,239,240)Pu and (241)Am exceeds the threshold level of 740 Bq/m(2), will be 3.7 times larger, reaching approximately 3.5 x10(3)km(2). Of this, almost 20% will have a contamination level of 1850--3700 Bq/m(2).  相似文献   

2.
The effect of americium-241 (241Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of 241Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 °C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the 241Am is discussed. The effect of 241Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in 241Am solutions was demonstrated; and the similarity of 241Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions.  相似文献   

3.
In this article the distribution of fission products and actinides in a soil profile from Novo Bobovicky in Russia, which was contaminated due to the Chernobyl nuclear power plant accident, is described. The ground deposition of long-lived fission products determined by gamma-spectrometry was (recalculated to 26 April 1986) 1600 kBq (137)Cs/m(2), 900 kBq (134)Cs/m(2) and 60 kBq (125)Sb/m(2). Of these radionuclides (137)Cs shows the dominating activity at the present time. After 6.5 years 90% of the Cs and Sb activity was contained in the upper 4 cm. A (239,240)Pu ground deposition of 77.4+/-8.0 Bq/m(2) was determined by alpha-spectrometry. The (238)Pu/(239,240)Pu activity ratio of 0.30+/-0.03 and (241)Pu/(239,240)Pu activity ratio of 115+/-14 (in 1986) measured in the soil profile, indicates that the analysed Pu originates mainly from the Chernobyl accident. The average (234)U/(238)U activity ratio of 1.06+/-0.29 indicates that the uranium in this soil is dominated by naturally occurring uranium.The alpha- and beta-autoradiography revealed that the activity is mainly present in particulate form. It could further be observed that the spots containing alpha- or beta-activity originated from different particles. A comparison of alpha-autoradiography with the bulk Pu and Am activity showed that 92% of the alpha-activity was present as clearly detectable alpha-spots.The beta-active particles, located by beta-autoradiography were correlated with gamma-spectrometric measurements and contained only (137)Cs. These hot spots ranged from 0.02 to 0.15 Bq.It could be concluded that the vertical transport of (137)Cs and fuel fragments occurs mainly by movement of particles through the soil. It could also be concluded that the fuel fragments found, in this soil were depleted in respect to Cs, Sb and Eu.Comparison of the analysed (238)Pu/(239,240)Pu, (241)Pu/(239,240)Pu and (241)Am/(239,240)Pu ratios with the ratios calculated with ORIGEN-S code gave an estimate of the average burn-up of the fuel particles to be in the range of 11-12 GWd/tU.The results presented in this article are valid for this single soil profile and should not be generalised unless validated in a more rigorous study of a larger number of soil profiles.  相似文献   

4.
The concentrations and vertical distribution of 239,240Pu, 241Am and 137Cs in the bottom sediments and water samples of Lake Päijänne were investigated. This lake is important, since the Päijänne area received a significant deposition from the Chernobyl fallout. Furthermore Lake Päijänne is the raw water source for the Helsinki metropolitan area. In addition no previous data on the distribution of plutonium and americium in the sediment profiles of Lake Päijänne exist. Only data covering the surface layer (0–1 cm) of the sediments are previously available. In the sediments the average total activities were 45 ± 15 Bq/m2 and 20 ± 7 Bq/m2 for 239,240Pu and 241Am, respectively. The average 241Am/239,240Pu ratio was 0.45 ± 0.14. The 241Am/239,240Pu ratio is lowest in the surface layer of the sediments and increases as a function of depth. The 238Pu/239,240Pu ratio of the sediment samples varied between 0.012 ± 0.025 and 0.162 ± 0.079, decreasing as a function of depth. The average activity in water was 4.9 ± 0.9 mBq/m3 and 4.1 ± 0.2 mBq/m3 for 239,240Pu and 241Am, respectively. The 241Am/239,240Pu ratio of water samples was 0.82 ± 0.17. 239,240Pu originating from the Chernobyl fallout calculated from the average total activities covers approximately 1.95 ± 0.01% of the total 239,240Pu activity in the bottom sediments. The average total 137Cs activity of sediment profiles was 100 ± 15 kBq/m2 and 19.3 ± 1.4 Bq/m3 in water samples.  相似文献   

5.
Forty-four soil samples were taken around the nuclear research centre Rez, near Prague. The mean activity concentrations of 238Pu, 239,240Pu, 241Am, 90Sr and 137Cs in uncultivated soil were 0.010, 0.26, 0.12, 2.7 and 23 Bq.kg(-1), respectively. Contents of radionuclides in cultivated soil were lower and in forest soil higher than in uncultivated soil. The mean activity ratios of 238Pu/239,240Pu, 241Am/239,240Pu, 90Sr/239,240Pu and 239,240Pu/137Cs in uncultivated soil were 0.041, 0.47, 10.9 and 0.013, respectively. The mean activity ratios in cultivated and forest soils were close to the values given above. It follows from the results that the source of 239,240Pu, 90Sr and 137Cs in the studied area is deposition from atmospheric nuclear tests, in the case of 137Cs also deposition from Chernobyl accident. The contribution of the research centre effluents was not proved for these radionuclides. Increased activity ratio of 241Am/239,240Pu indicates the presence of 241Am in the soils studied emanating from sources other than nuclear tests. Uniform distribution of the 241Am/239,240Pu activity ratio around the nuclear research centre and the absence of an area with evidently higher activity ratio, including at sites lying in the main wind direction, suggest that the additional activity of 241Am does not originate from the nuclear research centre. The additional source might be the deposition following the Chernobyl accident.  相似文献   

6.
The source of radioactive contamination of the Yenisei River floodplain, including contamination with transuranic elements, is the Mining-and-Chemical Combine of the Russian Ministry of Atomic Energy, which has for many years been producing weapons-grade plutonium. Transuranic elements have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. This work is an investigation of accumulation and release of 241Am by a submerged macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments. In 2000-2003, laboratory experiments were carried out with biomass of E. canadensis Mich. and filtered river water. The samples were collected from the Yenisei River upstream of the discharge of the Combine's radioactive effluent. The experiments showed that 241Am is accumulated by Elodea biomass: the activity concentration of 241Am can reach 3280+/-240 Bq/g, with the concentration factor for 241Am 16 600+/-2200l/kg. Results of chemical fractionation have proved that in the course of 241Am accumulation by Elodea biomass, 241Am tightly bound to biomass increases from 11% to 27% of the total 241Am in the biomass. Release of 241Am from the decaying Elodea biomass has been evaluated experimentally. By the end of the experiment (lasting up to 127 days), the Elodea plants had lost up to 65% of their initial 241Am activity and the rate of 241Am release into the water environment reached 23 Bq/day.  相似文献   

7.
A radiochemical technique for determination of plutonium isotopes and 241Am in soil samples is tested against IAEA-standard reference materials to determine its accuracy and precision for reliable results. The technique is then used in the investigation of topsoil samples, collected from the natural environment of the central region of Saudi Arabia, to assess the effect of fallout accumulation of these radionuclides in the region. Plutonium and americium were sequentially separated from all other components of the sample by anion-exchange chromatography and co-precipitated with Nd3+ as fluorides. The precipitates were mounted on membrane filters and measured using a high-resolution alpha-spectrometer. The results of the analysis of the reference materials showed satisfactory sensitivity and precision of the technique. The results of the analyzed soil samples show activity levels ranging from < LLD to 0.089 and from 相似文献   

8.
The objective of this paper is to report on the results of a study of 238Pu, 239 + 240Pu and 241Am inventories onto Blelham Tarn in Cumbria (UK). The atmospheric fallout inventory was obtained by analysing soil cores and the results are in good agreement with the literature: 101 Bq m(-2) for 239 + 240Pu; 4.5 Bq m(-2) for 238Pu and 37 Bq m(-2) for 241Am. The sediment core inventory for the whole lake is compared to the atmospheric fallout inventory. The sediment activity is 60-80% higher than the estimated fallout activity, showing a catchment area contribution and in particular the stream input.  相似文献   

9.
The purpose of this study was to investigate radon in the vicinity of geologic fault zones within the Krakow region of Poland, and to determine the influence of such formations on enhanced radon concentrations in soil. Radon ((222)Rn and (220)Rn) concentration measurements in soil gas (using ionization chamber AlphaGUARD PQ2000 PRO and diffusion chambers with CR-39 detectors), as well as radioactive natural isotopes of radium, thorium and potassium in soil samples (using gamma ray spectrometry with NaI(Tl) and HPGe detectors), were performed. Site selection was based on a geological map of Krakow. Geophysical methods (ground penetrating radar and shallow acoustic seismic) were applied to recognize the geological structure of the area and to locate the predicted courses of faults. Elevated levels of radon and thoron in soil gas were found in the study area when compared with those observed in an earlier survey covering Krakow agglomeration. For (222)Rn, the arithmetic mean of registered concentration values was 39 kBq/m(3) (median: 35.5 kBq/m(3)). For (220)Rn, the arithmetic mean was 10.8 kBq/m(3) and median 11.8 kBq/m(3).  相似文献   

10.
The biokinetics of 134Cs and 241Am in mussel species contaminated through water pathway has been studied under laboratory conditions. At equilibrium, the concentration factors for 134Cs and 241Am in small and large mussels were 2.80 and 2.57 and 200 and 150, respectively. The concentration factor of 134Cs in soft parts of the mussels was significantly high than whole body and shell tissue. However, the concentration factors of 241Am in soft parts and shell tissue samples were found to have similar rates. The depuration kinetics of the radionuclides were described by two-component exponential models. The biological half-lives at slow components between small and large mussels did not change significant, and were found to be 46.8-46.5 and 72.2-75.3 days for 134Cs and 241Am. The depuration kinetics of 134Cs and 241Am in soft parts described a single-component exponential model and the biological half-lives were found to be 29.4 and 41.1 days, respectively.  相似文献   

11.
During a 10-year period, 1988-1998, surface soil samples have been collected at Blentarp in southern Sweden and analysed for 137Cs from the Chernobyl accident and from the nuclear weapons tests. The distance between the sampling plots on the different sampling occasions has been no more than 3 m. The results show that the depth distribution of 137Cs is very similar for each of the sampling occasions, indicating that the caesium migration at this site is very small. The total activity measured in the soil cores is in agreement with the calculated activity of 137Cs deposited at the site after nuclear weapons tests and the Chernobyl accident, based on air activity concentration and the amount of precipitation. The calculated deposition of 137Cs originating from the bomb tests amounts to 1.41 kBq m-2 for the period 1962-1986, which is in agreement with the activity of nuclear weapons fallout measured in the soil samples (1.60 kBq m-2 as a mean value of the first four years of sampling). The calculated activity of 137Cs of Chernobyl origin was 0.79 kBq m-2, which agrees well with the value of 0.79 kBq m-2 measured in the soil samples in 1988.  相似文献   

12.
The effects of simplified rhizospheric conditions on the leaching of (241)Am from a calcareous soil, freshly contaminated, were investigated in batch and column experiments. Glucose and/or citrate were used as artificial exudate solutions at concentrations ranging from 10(-4) to 10(-2)moldm(-3). Am desorption, expressed in terms of distribution coefficients, varied from K(d)>10(4)dm(3)kg(-1) corresponding to a majority of experimental conditions, to K(d)/=10(-2)moldm(-3). Soil columns revealed successive steady states coupled with transitory episodes, the latter represented up to 90% of the total Am release. (241)Am fractions with different behaviours were thus highlighted in columns whereas batch only accounted for highest Am mobile fractions. The implications of the different processes are discussed in terms of modelling approach and risk assessment.  相似文献   

13.
To determine the potential for phytoextraction of 241Am and other contaminants from soil, accumulation of 241Am, 137Cs, Sr, Fe, Al, Pb, and Mg by tobacco was determined for soil applications of two concentrations of ethylenediaminetetraacetic acid (EDTA), citric acid, and ascorbic acid. In tobacco receiving EDTA at 3.1 mmol/kg of soil, 241Am content of plants averaged 15 Bq/kg (ranging up to 26 Bq/kg) while Fe concentrations became constant at 4.5 mmol/kg. Soil treatment with 18.8 mmol/kg EDTA resulted in average 241Am concentrations of 29 Bq/kg (19 times higher than controls). Uptake of Pb was similar to 241Am. In these samples, Fe increased to a maximum of almost 18 mmol/kg and 241Am content increased linearly with both Fe and Al. Plants receiving ascorbic and citric acids took up smaller quantities of 241Am, Pb, and Fe, even though these reagents were able to elute about as much Fe from the soil as EDTA. Synchrotron microbeam X-ray fluorescence (SXRF) was used to determine radial distributions of elements in roots and stems with and without EDTA treatment. SXRF maps indicate differences in behavior between Fe and Pb that are consistent with the bulk plant observations and provide insight into changes in metal content of the roots in the presence of EDTA.  相似文献   

14.
This paper describes a procedure developed to separate americium-241 from the bulk of a sample by coprecipitation followed by high sensitivity gamma-counting of the concentrate in a well-type detector. It enables the measurement of 241Am at low concentrations, e.g. fallout levels in soils and sediments, or where large sample sizes are not available. The method is much faster and more reliable than those involving separation from other alpha-emitters, electroplating and alpha-spectrometry. A number of tracer experiments was performed in order to optimize the conditions for coprecipitation of 241Am from sediment leachates. The general outline of the determination of americium is also given.  相似文献   

15.
A sand dune ecosystem in the vicinity of the British Nuclear Fuels reprocessing plant at Sellafield, Cumbria, UK was used to examine the spatial, temporal and depth distributions of 134Cs, 137Cs, 238Pu, 239 + 240Pu and 241Am in soil and in two species of vegetation (Festuca rubra, Ammophila arenaria). Core samples showed evidence of the accumulation of radionuclides derived mainly from sea-to-land transfer. Accumulated deposits of radioactivity (0-0.1 m) lie within the range: 1.1-3.4 Bq kg-1 (134Cs), 260-440 Bq kg-1 (137Cs), 31-40 Bq kg-1 (238Pu), 150-215 Bq kg-1 (239 + 240Pu) and 190-240 Bq kg-1 (241Am). Soil profiles showed greater activity concentrations in their deeper regions and this is attributed to leaching of radionuclides in percolating drainage water accentuated by the coarse texture, low organic matter and clay mineral content of coastal sands. Radionuclide activity concentrations in F. rubra and A. arenaria were similar, in the ranges 20-70 Bq kg-1 (137Cs), 1-5 Bq kg-1 (238Pu), 10-30 Bq kg-1 (239 + 240Pu) and 10-65 Bq kg-1 (241Am). Clear temporal and spatial variations were observed in both species of vegetation, reflecting the weather conditions antecedent to the sampling period and the influence of sea-to-land transfer. Concentration ratios (vegetation:soil) for activity concentrations in the two species were similar, in the ranges: 0.05-0.14 (137Cs), 0.025-0.097 (238Pu), 0.022-0.057 (239 + 240Pu) and 0.025-0.212 (241Am).  相似文献   

16.
A submerged macrophyte of the Yenisei River, Elodea canadensis, was used to study the microdistribution of the artificial radionuclide 241Am among different components of the plant. The total amount of 241Am added to the experimental system was 1850 ± 31 Bq/L. The total amount of 241Am accumulated by the plants was 182 Bq per sample, or 758,333 ± 385 Bq/kg dry mass. It has been found that the major portion of 241Am accumulated by E. canadensis, up to 85%, was bound to solid components of the cells. It is observed that the microdistribution of 241Am within different components of the submerged plant E. canadensis was not uniform. 241Am distribution vary depending on the age of the leaf blades, the state of the cells and morphological features of the plant stem.  相似文献   

17.
New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel′kem 1 and Tel′kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that 241Am, 239,240Pu and 238U concentrations in well waters within the study area are in the range 0.04–87 mBq dm−3, 0.7–99 mBq dm−3, and 74–213 mBq dm−3, respectively, and for 241Am and 239,240Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01 mBq dm−3, 0.08 mBq dm−3 and 0.32 mBq dm−3 for 241Am, 239,240Pu and 238U, respectively. The 235U/238U isotopic ratio in almost all well and stream waters is slightly elevated above the ‘best estimate’ value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53–85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11–42 μSv (mean 21 μSv). Presently, the ground water feeding these wells would not appear to be contaminated with radioactivity from past underground testing in the Degelen Mountains or from the Tel′kem explosions.  相似文献   

18.
Previous projects specifically aimed at performing radiological assessments in the vicinity of North Wales, investigating the presence and transfer of radionuclides from sea to land, were in 1986 and 1989. Since then, changes have occurred in the radioactive discharges from the British Nuclear Group Sellafield site. Annual discharges of (137)Cs, (238)Pu, (239,340)Pu and (241)Am have decreased markedly whereas, up until recent years, discharges of (99)Tc have increased. It is therefore desirable to quantify current transfer processes of radionuclides in the North Wales region and thus provide an update on 15-year-old studies. A field campaign was conducted collecting soil samples from 10 inland transects and air particulates on air filters from three High Volume Air Samplers, along the northern coast of Wales at Amlwch, Bangor Pier and Flint. Complementary field data relating to external gamma dose rates were collected at the soil sites. The field data generated for (137)Cs, (238)Pu, (239,340)Pu and (241)Am were consistent with what had been reported 15 years previously. Therefore, there has been no increase in the supply of these Sellafield-derived radionuclides to the terrestrial environment of the North Wales coast. The (99)Tc data in sediments were consistent with reported values within annual monitoring programmes, however, a relatively high activity concentration was measured in one sediment sample. This site was further investigated to determine the reason why such a high value was found. At present there is no clear evidence as to why this elevated concentration should be present, but the role of seaweed and its capacity in accumulating (99)Tc and transferring it to sediment is of interest. The analysis of the field samples for (99)Tc, (137)Cs, (238)Pu, (239,240)Pu and (241)Am has provided a data set that can be used for the modelling of the transfer of anthropogenic radionuclides from sea to land and its subsequent radiological implications and is reported in an accompanying paper.  相似文献   

19.
Foliar transfer of 241Am, 239,240Pu, 137Cs and 85Sr was evaluated after contamination of bean plants (Phaseolus vulgaris) at the flowering development stage, by soaking their first two trifoliate leaves into contaminated solutions. Initial retentions of 241Am (27%) and 239,240Pu (37%) were higher than those of 137Cs and 85Sr (10-15%). Mean fraction of retained activity redistributed among bean organs was higher for 137Cs (20.3%) than for 239,240Pu (2.2%), 241Am (1%) or 85Sr (0.1%). Mean leaf-to-pod translocation factors (Bq kg(-1) dry weight pod/Bq kg(-1) dry weight contaminated leaves) were 5.0 x 10(-4) for 241Am, 2.7 x 10(-6) for 239,240Pu, 5.4 x 10(-2) for 137Cs and 3.6 x 10(-4) for 85Sr. Caesium was mainly recovered in pods (12.8%). Americium and strontium were uniformly redistributed among leaves, stems and pods. Plutonium showed preferential redistribution in oldest bean organs, leaves and stems, and very little redistribution in forming pods. Results for americium and plutonium were compared to those of strontium and caesium to evaluate the consistency of the attribution of behaviour of strontium to transuranium elements towards foliar transfer, based on translocation factors, as stated in two radioecological models, ECOSYS-87 and ASTRAL.  相似文献   

20.
The particulate fraction (measured by filtration through 0·45 μm filters) and the organically complexed fraction (measured by gel filtration chromatography) of freshly added 241Am and 59Fe were determined in 21 prefiltered surface waters. The adsorptive behaviour of both radionuclides on a biological surface (isolated carapace segments of crayfish) was tested simultaneously. A striking similarity was observed in the chemical and adsorptive behaviours of both radionuclides. The stoichiometry of particulate formation revealed a 3/4, Am to Fe ratio. This same stoichiometric relationship was observed in organic complexation, while adsorptive behaviour was characterised by a 1/1, Am to Fe ratio. It is concluded that Am predictably follows the chemistry of freshly added Fe at least over a 15 day period. This observation may find interesting application in risk assessment where use can be made of the well-known geochemical cycling of iron to predict the behaviour of man-made Am.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号