共查询到20条相似文献,搜索用时 0 毫秒
1.
Effective protection of the ~19 000 IUCN-listed threatened species has never been more pressing. Ensuring the survival of the most vulnerable and irreplaceable taxa and places, such as those identified by the Alliance for Zero Extinction (AZE) species and their associated sites (AZEs&s), is an excellent opportunity to achieve the Aichi 2020 Targets T11 (protected areas) and T12 (preventing species extinctions). AZE taxa have small, single-site populations that are especially vulnerable to human-induced extinctions, particularly for the many amphibians. We show that AZEs&s can be protected feasibly and cost-effectively, but action is urgent. We argue that the Alliance, whose initial main aim was to identify AZEs&s, must be followed up by a second-generation initiative that directs and co-ordinates AZE conservation activities on the ground. The prominent role of zoos, conservation NGOs, and governmental institutions provides a combination of all-encompassing knowhow that can, if properly steered, maximize the long-term survival of AZEs&s. 相似文献
2.
At a suburban location in southern Korea, the optical properties of the atmosphere were characterized over a horizontal light path of 1.5 km (in two ways) from 22 October to 19 November 2002. This was achieved by measuring light extinction with a long path differential optical absorption spectrometer system in the ultraviolet and visible wavelength region. The extinction coefficients were obtained relatively as a ratio of a target air spectrum to a defined reference spectrum measured over the same light path (290–760 nm). To assess the measured extinction coefficients, the extinction coefficients at 550 nm were compared to those measured with a commercial long-path transmissometer.To avoid the absorption of known gases (H 2O, NO 2, and O 3), extinction coefficients at the spectral bands of 325, 394, 472, 550, 580, 680, and 753 nm, with 3 nm window widths, were selected and analyzed for the purpose of the study of the aerosol properties. Importantly, the atmospheric physical properties during the episodes (such as a biomass burning or a dust storm) were investigated by means of the Angstrom parameters and the mass ratio of fine-to-coarse particles. In addition, it was found that the Angstrom exponents decrease monotonously for relative humidity above 50%. 相似文献
3.
以国外生活垃圾填埋场对地下水污染的风险评价方法为基础,建立了综合考虑含水层脆弱性及生活垃圾填埋场自身性质的地下水污染风险评价方法,并以北京北天堂垃圾填埋场为例.评价了当地4个生活垃圾填埋场对地下水污染的风险级别.结果表明,生活垃圾填埋场对地下水污染的风险取决于场地规模、防护情况等自身相关参数以及场地所处位置的含水层脆弱... 相似文献
4.
为识别反映地下水质量的优先控制污染物,基于污染物危害性评价体系,结合某炼厂污染物的检出率、检出浓度和超标倍数,建立了石油炼化企业地下水中优先控制污染物识别方法;采用该方法对石油炼制厂地下水污染物进行了筛选研究。结果表明,石油炼化行业地下水中优先控制污染物清单包括苯、甲苯、乙苯、二甲苯、石油烃、苯酚、挥发性酚类、砷、铅和锰等10种5类污染物。研究结果与实验监测结果具有一致性,石油炼化厂地下水污染应优先控制清单中污染物,尤其是苯系物和石油烃。 相似文献
5.
In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha7 LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha7 LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha7 LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils. 相似文献
6.
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity. 相似文献
7.
Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow and transport around the GCW. However, the time and expense associated with conducting all of those tests would be prohibitive for most sites. As a consequence, a sequential protocol for GCW characterization is presented here in which the number of tools used can be adjusted to meet the needs of individual sites. While not perfect, we believe that this approach represents the most efficient means for evaluating GCW performance. 相似文献
8.
Coptis teeta (Ranunculaceae), is a nontimber forest product (NTFP) that only grows in northwest Yunnan and northeast India. Its tenuous rhizome, known as "Yunnan goldthread" in the traditional Chinese medicine system, has been used as an antibacterial and as an antiinflammatory medicine for a long time. The increasing demand has resulted in commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation, and wild populations are at risk of extinction. Fortunately, there exists at least 2000 hectares of a C. teeta-based agroforestry system initiated by the Lisu people in Nujiang, northwest Yunnan. This cultivation supplies us with a valuable study case for the balance between conservation and sustainable use. This case study investigated the traditional management system and history of C. teeta in Nujiang through ethnobotanical methods and field investigation. We also contrasted initial costs, economic returns, and labor demands for C. teeta cultivation with other major land uses in the region. Compared with swidden agriculture, the major land-use type in the region, C. teeta cultivation offers high economic returns and low labor and initial costs; moreover, C. teeta cultivation does not interfere with subsistence agricultural duties. This agroforestry system reflected that the cultivation of NTFPs is a conservation strategy for maintaining forest diversity, while providing a stable economic return to local forest communities, and indicates how local people manage biodiversity effectively. 相似文献
9.
A field investigation of a TCE plume in a surficial sand aquifer shows that groundwater-surface water interactions strongly influence apparent plume attenuation. At the site, a former industrial facility in Connecticut, depth-discrete monitoring along three cross-sections (transects) perpendicular to groundwater flow shows a persistent VOC plume extending 700 m from the DNAPL source zone to a mid-size river. Maximum TCE concentrations along a transect 280 m from the source were in the 1000s of microg/L with minimal degradation products. Beyond this, the land surface drops abruptly to a lower terrace where a shallow pond and small streams occur. Two transects along the lower terrace, one midway between the facility and river just downgradient of the pond and one along the edge of the river, give the appearance that the plume has strongly attenuated. At the river, maximum TCE concentrations in the 10s of microg/L and similar levels of its degradation product cis-DCE show direct plume discharge from groundwater to the river is negligible. Although degradation plays a role in the strong plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water (i.e. the pond and small streams), where some mass loss occurs via water-air exchange. Groundwater and stream mass discharge estimates show that more than half of the plume mass discharge crossing the first transect, before surface water interactions occur, reaches the river directly via streamflow, although river concentrations were below detection due to dilution. This study shows that groundwater and surface water concentration measurements together provide greater confidence in identifying and quantifying natural attenuation processes at this site, rather than groundwater measurements alone. 相似文献
10.
原位化学氧化(in situ chemical oxidation,ISCO)是一种高效便捷的去除地下水有机污染物的技术,相比于多孔介质,岩溶地下河中ISCO技术应用还未见报道.为了更好地认识ISCO技术在岩溶地下河石油污染修复中应用的可行性,使用过硫酸盐(persulfate,PS)作为化学氧化剂,在实验室利用碳酸盐... 相似文献
11.
在分析广东省湛江市东海岛的区域水文地质特征及地下水开发利用特点的基础上,构建了地下水入海排泄量估算模型,以估算地下水入海排泄量和携带入海的营养盐量。结果表明,估算得到的2009年东海岛地下水入海排泄总量为133.8×104m3,其中携带入海的营养盐总量为5 157.98kg,地下水的携带入海成为近岸海域陆域营养盐入海排泄的主要途径;研究区位于沿海地带的砂堤砂地潜水分布区以及位于海岸地带的湛江组浅部潜水—微承压水含水层分布区等局部地段,存在地下水入海排泄量的低值区,可能存在海水入侵风险。 相似文献
13.
地下水曝气(Air Sparging,AS)是修复饱和土壤及地下水有机污染的有效技术.AS多相流动过程中气液流动以及污染物传质过程的模型研究是AS技术的关键因素,详细介绍了近年来AS系统的理论模型方法及研究进展,并对其效果进行评价. 相似文献
14.
地下水是维系水系统良性循环和支撑生态系统协调发展的重要保障.针对滇池流域水文地质特征,选择含水层介质、地形坡度、河网距离以及硝态氮单位面积污染负荷4个评价因子对地下水污染风险进行综合评价.利用层次分析法确定4个评价因子的权重并进行图层叠加分析,将地下水污染风险划分为敏感区、易污染区和一般防控区进行分区防控.最后提出防治措施,以期为水资源的优化配置和水体保护提供参考. 相似文献
15.
Many environmental multimedia risk assessment models have been developed and widely used along with increasing sophistication of the risk assessment method. Despite of the considerable improvement, uncertainty remains a primary threat to the credibility of and users' confidence in the model-based risk assessments. In particular, it has been indicated that scenario and model uncertainty may affect significantly the assessment outcome. Furthermore, the uncertainty resulting from choosing different models has been shown more important than that caused by parameter uncertainty. Based on the relationship between exposure pathways and estimated risk results, this study develops a screening procedure to compare the relative suitability between potential multimedia models, which would facilitate the reduction of uncertainty due to model selection. MEPAS, MMSOILS, and CalTOX models, combined with Monte Carlo simulation, are applied to a realistic groundwater-contaminated site to demonstrate the process. It is also shown that the identification of important parameters and exposure pathways, and implicitly, the subsequent design of uncertainty reduction and risk management measures, would be better-formed. 相似文献
16.
Groundwater is the main source of water in Mediterranean, water-scarce, semiarid regions of Tunisia, Africa. In this study of the Korba coastal aquifer, 17 water wells were studied to assess their suitability for irrigation and drinking purposes. Assessment parameters include pH, salinity, specific ion toxicity, sodium adsorption ratio, nutrients, trace metals pollutants, and fecal indicators and pathogens. Results indicate that salinity of groundwater varied between 0.36 dS/m and 17.4 dS/m; in addition, its degree of restriction is defined as "none", "slight to moderate", and "severe" for 18, 23, and 59% of the studied wells, respectively. To control salts brought in by irrigation waters, the question arises as to how much water should be used to reach crop and soil requirements. To answer this question, a new approach that calculates the optimum amount of irrigation water considering the electrical conductivity of well water (ECw), field crops, and the semiarid meteorological local conditions for evapotranspiration and rainfall is developed. This is applied to the authors' case study area; barley and lettuce were selected among the commonly grown crops because they are high- and low-salinity tolerant, respectively. Leaching requirements were found to be independent of the crop selected, and depend only on the season, that is, 250 to 260 mm/month in the driest season, with a minimum of 47 mm/month though all seasons. A high bacteriological contamination appears in almost all samples. However, if disinfected and corrected for pH, all the well waters can be used for animal farming (including livestock and poultry), although only 29% could be used for human consumption. 相似文献
17.
A two-stage methanotrophic bioreactor system was developed for remediation of water contaminated with TCE and other chlorinated, volatile, aliphatic hydrocarbons. The first stage of the reactor was a suspended-growth culture vessel using a bubbleless methane-transfer device. The second stage was a plug-flow bioreactor supplied with contaminated groundwater and cell suspension from the culture vessel. The test objectives were to determine the applicability of microbial culture conditions reported in the literature for continuous, pilot-scale TCE treatment; the technical feasibility of plug-flow bioreactor design for treatment of TCE; and the projected economic competitiveness of the technology considering the cost of methane for growth of methanotrophs. The methanotrophic organism used in the study was Methylosinus trichosporium OB3b. Information on system operation was obtained in bench tests prior to conducting the pilot tests. In bench- and pilot-scale tests, variability in the degree of TCE degradation and difficulty in maintaining the microbial culture activity led to short periods of satisfactory biotreatment. Further development of the microbial culture system will be required for long-term operation. During transient periods of high TCE degradation activity, the bioreactor concept proved feasible by exhibiting both a high degree of TCE biodegradation (typically about 90% at influent TCE concentrations of 0.5-4 ppm) and a close approximation to first-order reactor kinetics throughout the length of the reactor. Actual methane usage in the pilot-scale reactor resulted in projected methane costs of $0.33 per 1000 gallons of water treated. This cost theoretically would be reduced by system modifications. The theoretical minimum methane cost was approximately $0.05 per 1000 gallons. 相似文献
18.
Environmental Science and Pollution Research - Groundwater is a key resource in the world. Its importance is often undermined, despite the various applications which include irrigation, drinking,... 相似文献
19.
The Handix Scientific open-path cavity ringdown spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth ( f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne’s cavity-attenuated phase shift particulate matter extinction monitor [CAPS PMex]). Derived hygroscopicity (relative humidity [RH] < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern United States. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016—possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high-time-resolution OPCRDS+CAPS PMex data, and the κext model was more accurate than the gamma model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average, IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction. Implications: Although light extinction, which is directly related to visibility, is not directly measured in U.S. National Parks, existing IMPROVE protocols can be used to accurately infer visibility for average humidity conditions, but during the large fraction of the year when humidity is above or below average, accuracy is reduced substantially. Furthermore, nephelometers, which are used to assess the accuracy of IMPROVE visibility estimates, may themselves be biased low when humidity is very high. Despite reductions in organic and sulfate particles since the 1990s, hygroscopicity, particles’ affinity for water, appears unchanged, although this conclusion is weakened by the previously mentioned nephelometer limitations. 相似文献
20.
The [revised] IMPROVE Equation for estimating light extinction from aerosol chemical composition was evaluated considering new measurements at U.S. national parks. Compared with light scattering (Bsp) measured at seven IMPROVE sites with nephelometer data from 2003–2012, the [revised] IMPROVE Equation over- and underestimated Bsp in the lower and upper quintiles, respectively, of measured Bsp. Underestimation of the worst visibility cases (upper quintile) was reduced by assuming an organic mass (OM)/organic carbon (OC) ratio of 2.1 and hygroscopic growth of OM, based on results from previous field studies. This assumption, however, tended to overestimate low Bsp even more. Assuming that sulfate was present as ammonium bisulfate rather than as ammonium sulfate uniformly reduced estimated Bsp. The split-mode model of concentration- and size-dependent dry mass scattering efficiencies in the [revised] IMPROVE Equation does not eliminate systematic biases in estimated Bsp. While the new measurements of OM/OC and OM hygroscopicity should be incorporated into future iterations of the IMPROVE Equation, the problem is not well constrained due to a lack of routine measurements of sulfate neutralization and the water-soluble fraction of OM in the IMPROVE network. Implications: Studies in U.S. national parks showed that aerosol organics contain more mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE Equation for calculating chemical light extinction. Consideration of these results could significantly shift the apportionment of light extinction to water-soluble organic aerosols and therefore better inform pollution control strategies under the U.S. Environmental Protection Agency Regional Haze Rule. 相似文献
|