共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang YF Wang GQ Huang GH Xiao HN Chakma A 《Environmental pollution (Barking, Essex : 1987)》2008,151(3):460-469
To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. 相似文献
2.
Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1. 相似文献
3.
Bekins BA Cozzarelli IM Godsy EM Warren E Essaid HI Tuccillo ME 《Journal of contaminant hydrology》2001,53(3-4):387-406
A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes. 相似文献
4.
A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hydrophobic chemicals. Here we present a novel solution based on equilibrium passive dosing. It employs a commercially available unit consisting of ∼16 000 polydimethylsiloxane (PDMS) tubes connected to two manifolds. The chemicals are loaded into the unit by repeatedly perfusing it with a methanol solution of the substances that is progressively diluted with water. Thereafter the unit is perfused with water and the chemicals partition from the unit into the water. The system was tested with nine chemicals with log KOW ranging from 4.1 to 6.3. The aqueous concentrations generated were shown to be largely independent of the water flow rate, and the unit to unit reproducibility was within a factor of ∼2. In continuous flow experiments the aqueous concentrations of most of the study chemicals remained constant over 8 d. A model was assembled that allows prediction of the operating characteristics of the system from the log KOW or PDMS/water partition coefficient of the chemical. The system is a simple, safe, predictable and flexible tool that generates stable aqueous concentrations of hydrophobic chemicals. 相似文献
5.
The aim of this study was to compare degradation rates of aniline in laboratory shake flask simulation tests with field rates in the river Rhine. The combined events of a low flow situation in the Rhine and residual aniline concentrations in the effluent from the BASF treatment plant in Ludwigshafen temporarily higher than normal, made it possible to monitor aniline at trace concentrations in the river water downstream the wastewater outlet by means of a sensitive GC headspace analytical method. Aniline was analyzed along a downstream gradient and the dilution along the gradient was calculated from measurements of conductivity, sulfate and a non-readily biodegradable substance, 1,4-dioxane. Compensating dilution, field first-order degradation rate constants downstream the discharge of BASF were estimated at 1.8 day−1 for two different dates with water temperatures of 21.9 and 14.7 °C, respectively. This field rate estimate was compared with results from 38 laboratory shake flask batch tests with Rhine water which averaged 1.5 day−1 at 15 °C and 2.0 day−1 at 20 °C. These results indicate that laboratory shake flask batch tests with low concentrations of test substance can be good predictors of degradation rates in natural water bodies––at least as ascertained here for short duration tests with readily degradable compounds among which aniline is a commonly used reference. 相似文献
6.
Effects of biofilm growth on flow and transport through a glass parallel plate fracture 总被引:1,自引:0,他引:1
The effects of biofilm growth on flow and solute transport through a sandblasted glass parallel plate fracture was investigated. The fracture was inoculated using soil microorganisms. Glucose, oxygen and other nutrients were supplied to support growth. The biomass initially formed discrete clusters attached to the glass surfaces, but over time formed a continuous biofilm. From dye tracer tests conducted during biofilm growth, it was observed that channels and low-permeability zones dominated transport. The hydraulic conductivity of the fracture showed a sigmoidal decrease with time. The hydraulic conductivity was reduced by a factor of 0.033, from 18 to 0.6 cm/s, corresponding to a 72% decrease in the hydraulic aperture, from 500 to 140 microm. In contrast, the mass balance aperture, determined from fluoride tracer tests, remained relatively constant, indicating that the impact of biomass growth on effective fracture porosity was much less than the effect on hydraulic conductivity. Analyses of pre-biofilm tracer tests revealed that both Taylor dispersion and macrodispersion were influencing transport. During biofilm growth, only macrodispersion was dominant. The macrodispersion coefficient alpha(macro) was found to increase logarithmically with hydraulic conductivity reduction. 相似文献
7.
Chao-Hsien Liaw Yao-Lung Tsai Wei-Min Huang Chun-Jen Huang Jui-Ling Chen 《Water environment research》2007,79(8):821-827
This study assessed the performance and developed a simple approach for estimating infiltration capacity of two infiltration gutters by using on-site tests. Permeable-brick and redbrick infiltration gutters were constructed on-site. Water infiltrated from the surfaces of two vertical sides (NFS-2S), bottom (NFS-B), and three faces (NFS-3S) of two gutters were measured under nonflowing and steady-state conditions. Tests results from NFS-2S and NFS-3S indicate that the permeability and water depth for both gutters are linearly dependent on each other. Experimental results also indicate that, when the bottom of the gutter is clogged, the permeable-brick gutter still retains approximately 93 and 79% for redbrick gutter of their infiltration capacity for NFS-3S. On the whole, permeable-brick gutter has an advantage over redbrick gutter in stormwater infiltration. Based on these results, the permeability for different water depths and widths of these two gutters can be obtained. 相似文献
8.
A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions 总被引:3,自引:0,他引:3
An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwater-discharge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 microg/l of total volatile organics) in the streambed are of ecological concern and represent potential adverse exposure locations for benthic and hyporheic zone aquatic life, but the effect of these exposures on the overall health of the river has yet to be determined. Even if the upgradient source of PCE is remediated and additional PCE is prevented from reaching the streambed, the high-concentration deposits in the streambed will likely take decades to hundreds of years to flush completely clean under natural conditions because these areas have low vertical groundwater flow velocities and high retardation factors. Despite high concentrations of contaminants in the streambed, PCE was detected in the surface water only rarely due to rapid dilution in the river and no cDCE or VC was detected. Neither the sampling of surface water nor the sampling of the groundwater from the aquifer immediately adjacent to the river gave an accurate indication of the high concentrations of PCE biodegradation products present in the streambed. Sampling of the interstitial water of the shallow streambed deposits is necessary to accurately characterize the nature of plumes discharging to rivers. 相似文献
9.
The ETEX data set opens new possibilities to develop data assimilation procedures in the area of long-range transport. This paper illustrates the possibilities using a variational approach, where the source term for ETEX-I was reconstructed. The MATCH model (Robertson et al., 1996) has been the basis for this attempt. The timing of the derived emission rates are in accordance with the time period for the ETEX-I release, and a cross validation, with observations beyond the selected assimilation period, shows that the source term gained holds for the entire ETEX-I experiment. A poor-man variational approach was shown to perform nearly as good as a fully variational data assimilation. The issue of quality control has not been considered in this attempt but will be an important part that has to be addressed in future work. 相似文献
10.
Jordan FL Sandrin SK Frye RJ Brusseau ML Maier RM 《Journal of contaminant hydrology》2004,74(1-4):19-38
A series of miscible-displacement column experiments were conducted under saturated flow conditions to systematically investigate the influence of physical and biological complexity on bacterial activity and fate in the presence and absence of a non-sorbing growth substrate, salicylate. Bacterial elution was monitored for three different systems; System I--a sterilized, inoculated, well-sorted sand, System II--a sterilized, inoculated, heterogeneous loamy sand (Hayhook), and System III--two different unsterilized loamy sands (Hayhook and Vinton) each with their associated indigenous microbial community. Results show that System I behaved ideally with respect to both cell and substrate transport, wherein: (1) growth occurred in response to substrate addition, (2) cell elution increased in response to the substrate pulse, and (3) breakthrough curves were reproducible for both substrate and cell elution. In contrast, System II showed ideal behavior with respect to substrate transport but showed variable behavior for cell transport. Further, there was no measurable growth in response to substrate addition and no increase in cell elution during the salicylate pulse. System III exhibited non-ideal behavior for both substrate and cell transport. Of particular interest is the fact that the indigenous communities of the two soils behaved differently. Specifically, for the Hayhook soil, an increased elution response was observed for the heterotrophic population while the salicylate-degrading community was preferentially retained in the column. In contrast for the Vinton soil, the substrate pulse did not elicit an elution response from either the heterotrophic or salicylate-degrading community from the culturable, indigenous Vinton microorganisms. For Systems II and III, the observed variability appears to be associated with the biological component of the system, since sterile controls were reproducible. This type of systematic study is critical for understanding cell and substrate transport behavior in complex, heterogeneous systems, and illustrates the potential uncertainty associated with measurements in such systems. 相似文献
11.
Antonio L. Cerdeira Manoel D. Desouza Sonia C. N. Queiroz Vera L. Ferracini Denizart Bolonhezi Marco A. F. Gomes 《Journal of environmental science and health. Part. B》2013,48(6):635-639
This study was undertaken to evaluate the degradation and mobility of the herbicide tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) in soil under field conditions, and its potential for leaching and groundwater contamination. A watershed, Espraiado, located over a recharge area in Brazil, was chosen for soil and water studies. At Espraiado, water samples were collected from seven wells at intervals of three months from March 2004 to June 2006 and analyzed for tebuthiuron. Other samples were taken from city wells located outside of the recharge area. To assess the potential movement to the aquifer, tebuthiuron was also applied to trial plots at the recommended label rate of 1.0 kg/ha a.i. in May of 2004, with and without sugarcane coverage, on sandy soil. Soil samples were collected during the years of 2004 and 2005, at depths intervals of 20 cm from soil surface down to 120 cm and analyzed for tebuthiuron at zero, 3, 30, 60, 90, 120, 150, 180, 240, and 300 days after application. There was no clear effect of sugarcane coverage on the tebuthiuron degradation in soils, but it moved faster into the soil where there was no cover. After 180 days there were no measurable residues in the soil, and tebuthiuron was not found below 40 cm depth in any time. Tebuthiuron had a half-life of 20 days under those conditions. No tebuthiuron residue was found in ground water samples at any sampling time. 相似文献
12.
Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure conditions. 相似文献
13.
《国际环境与污染杂志》2011,29(4):370-382
This paper summarises the use of geostatistics to evaluate an existing network of wells in a groundwater monitoring program. The primary objective was to evaluate whether selective well removal would result in a comparable characterisation of a trichloroethylene (TCE) plume. For adequate characterisation, it is important to retain enough wells to evaluate areas with higher concentrations and to show that there is high confidence or low uncertainty in the characterisation. A second objective was to utilise public or commercial software available to consultants in a workplace setting to demonstrate the ease with which this analysis can be performed. A baseline characterisation was generated with the entire well network. Then, subsequent simulations were performed with selected wells removed from the well network. Results indicate that by removing key wells from the network, the TCE plume can be adequately characterised without a significant increase in uncertainty. 相似文献
14.
Temporal atmospheric temperature changes during summers at sub-Arctic sites often cause periodic fluctuations in shallow landfarm and surface soil temperatures. However, little information is available on the effect of site-relevant variations on biodegradation performance in cold climates. This study compares the rate and extents of biodegradation of petroleum hydrocarbons at variable site temperatures (1-10 °C) representative of summers at a sub-Arctic site reported previously with those obtained under a constant average temperature of 6 °C. The biodegradation was evaluated in pilot-scale landfarming experiments with field-aged petroleum-contaminated soils shipped from Resolution Island (61°30′N, 65°00′W), Nunavut, Canada. Under the variable site temperature conditions biodegradation rate constants of semi- (F2) and non-volatile (F3) hydrocarbon fractions were enhanced by over a factor of two during the 60-d experiment, compared to the constant temperature mode. The decrease in total petroleum hydrocarbons (TPH) under the variable site temperature mode was 55% compared to only 19% under the constant average temperature mode. The enhanced biodegradation is attributable to the non-linear acceleration of microbial activity between 4.7 and 10 °C and faster growth of indigenous hydrocarbon-degrading microbial populations. The first-order biodegradation rate constants of 0.018, 0.024 and 0.016 d−1 for TPH, F2 and F3 fractions at the variable site temperature were in agreement with those determined by an on-site experiment at the same site. 相似文献
15.
Shin D Moon HS Lin CC Barkay T Nam K 《Environmental pollution (Barking, Essex : 1987)》2011,159(2):509-514
A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 ± 0.72) and strain S (from 1 to 0.40 ± 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed. 相似文献
16.
Influence of indoor transport and mixing time scales on the performance of sensor systems for characterizing contaminant releases 总被引:2,自引:0,他引:2
Priya Sreedharan Michael D. Sohn William W Nazaroff Ashok J. Gadgil 《Atmospheric environment (Oxford, England : 1994)》2007,41(40):9530-9542
Optimizing real-time sensor systems to detect and identify relevant characteristics of an indoor contaminant event is a challenging task. The interpretation of incoming sensor data is confounded by uncertainties in building operation, in the forces driving contaminant transport, and in the physical parameters governing transport. In addition, simulation tools used by the sensor interpretation algorithm introduce modeling uncertainties. This paper explores how the time scales inherent in contaminant transport influence the information that can be extracted from real-time sensor data. In particular, we identify three time scales (within room mixing, room-to-room transport, and removal from the building) and study how they affect the ability of a Bayesian Monte Carlo (BMC) sensor interpretation algorithm to identify the release location and release mass from a set of experimental data, recorded in a multi-floor building. The research shows that some limitations in the BMC approach do not depend on details of the models or the algorithmic implementation, but rather on the physics of contaminant transport. These inherent constraints have implications for the design of sensor systems. 相似文献
17.
Fjeld RA Serkiz SM McGinnis PL Elci A Kaplan DI 《Journal of contaminant hydrology》2003,67(1-4):79-94
A conceptual model is proposed to explain the transport behavior of plutonium in laboratory columns packed with a sandy coastal soil from the U.S. Department of Energy (DOE)'s Savannah River Site. The column transport experiments involved the introduction of a finite step input of plutonium, predominately in the +5 oxidation state, into the columns followed by elution with a low-carbonate solution of 0.02 M NaClO4 at pH 3, 5, and 8. Total plutonium concentrations were measured in the effluent as a function of time. These elution profiles suggest at least two distinct physical/chemical forms of plutonium, each with a different mobility. To explain the observed behavior, the following conceptual model was evaluated: [1] equilibrium partitioning of plutonium (V) and plutonium (IV) between the aqueous and sorbed phases as defined by pH-dependent, oxidation-state specific distribution coefficients and [2] kinetic reduction of plutonium (V) to plutonium (IV) in the sorbed phase. The conceptual model was applied to the column experiments through a one-dimensional advective/dispersive mathematical model, and predictions of the mathematical model were compared with the experimental data. Overall, the model was successful in predicting some of the major features observed in the experiments. It also yielded quantitative estimates of the rate constant for surface mediated reduction of plutonium (V) to plutonium (IV) that were of the same order (10(-4) to 10(-5) s(-1)) as those calculated from batch data both for this soil and for goethite. 相似文献
18.
Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site 总被引:1,自引:0,他引:1
T. Prabhakar Clement Christian D. Johnson Yunwei Sun Gary M. Klecka Craig Bartlett 《Journal of contaminant hydrology》2000,42(2-4)
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes. 相似文献
19.
At sites in fractured rock where contamination has been exposed to the rock matrix for extended periods of time, the amount of contaminant mass residing in the matrix can be considerable. Even though it may be possible to diminish concentrations by the advection of clean water through the fracture features, back diffusion from mass held in the matrix will lead to a continuing source of contamination. In such an event, the development of a biofilm (a thin film of microbial mass) on the wall of the fractures may act to limit or prevent the back diffusion process. The objective of this preliminary study is to explore the influence imparted by the presence of a biofilm on the process of matrix diffusion. The investigation was conducted using radial diffusion cells constructed from rock core in which biofilm growth was stimulated in a central reservoir. Once biofilms were developed, forward diffusion experiments were conducted in which a conservative solute migrated from the central reservoir into the intact rock sample. Diffusion experiments were performed in a total of 11 diffusion cell pairs where biofilm growth was stimulated in one member of the pair and inhibited in the other. The effect of the presence of a biofilm on tracer diffusion was determined by comparison of the diffusion curves produced by each cell pair. A semi-analytical model that accounts for the presence of a biofilm was used to investigate the effect of the biofilm on mass transfer due to changes in the effective porosity, effective diffusion coefficient, and the depth of penetration of the biofilm into the intact rock. The results show that the biofilm acted to plug the rock matrix, rather than forming a discrete layer on the reservoir surface. The reduction in effective porosity due to the biofilm ranged from 6% to 52% with the majority of the samples in the 30% to 50% range. Based on the present results, with more efficient biofilm stimulation, it is reasonable to assume that a more complete plugging of the microcrack porosity might be possible, leaving a much thicker and efficient barrier than could be achieved via a surface biofilm. 相似文献
20.
Accidental releases of waste water from the first Czechoslovak nuclear power plant, A1, caused contamination of sediments of the Dudváh river, flowing into the Vah river, in Slovakia. Rather high concentrations of 137Cs and 90Sr (2150Bq dm−3 and 215Bq dm−3, respectively) were found in bottom sediments of a former channel of the re-engineered river body at a distance of about 250 m from a village, Siladice, with water-supply wells. In order to assess the possibility of contamination of the wells, underground migration of both radionuclides from the contaminated area was simulated using an original layered convection-diffusion model. Kd values determined in laboratory experiments were used. The analysis of the hydrological situation in the area reveals that the critical condition is a dominant horizontal groundwater flow near the water table in the direction from the Váh bank to Siladice, in the periods when the contaminated body lies under the water table. The simulation calculated under conservative conditions showed that the contamination of water-supply wells would not exceed permissible concentration limits. 相似文献