首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mangrove plants play an important role in heavy metal maintenance in a mangrove ecosystem. To evaluate the characteristics of heavy metal contamination in the Futian mangrove forest, Shenzhen, China, eight heavy metals in mangrove sediments and plants were monitored, including essential elements such as Cu and Zn, and non-essential elements such as Cr, Ni, As, Cd, Pb and Hg. The results showed that the heavy metals exhibited the following scheme: Zn > As > Cu ≈ Cr > Pb > Ni > Cd ≈ Hg in sediment cores, among which Cd, As, Pb and Hg contents were nearly ten times higher than the background values. There was no significant difference in metal maintenance capability between native and exotic species. In mangrove plants’ leaves and stems, concentrations of Cu, Zn and As were higher than other heavy metals. The low bioconcentration factors for most heavy metals, except for Cr, implied the limited ability of heavy metal accumulation by the plants. Mangrove plants seem to develop some degree of tolerance to Cr. The factor analysis implies that anthropogenic influences have altered metal mobility and bioavailability.  相似文献   

2.
Jharia (India) a coal mining town has been affected by the consequences of mining and associated activities. Samples of outdoor fallen dust were collected at different locations of Jharia covering four different zones: commercial, petrol pump, high traffic, and residential areas. The dust samples were analysed for different trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, and Zn). The highest concentration of the elements in the dust samples are Mn (658 mg/kg), Zn (163.6 mg/kg), Cr (75.4 mg/kg), Pb (67.8 mg/kg), Ni (66 mg/kg), Cu (56.8 mg/kg), Co (16.9 mg/kg), As (4.1 mg/kg), and Cd (0.78 mg/kg). The concentration of selenium was below detection limit. Except Cd, contents of all the other elements in the dust samples were significantly lower in the residential area. High amount of Ni (145 mg/kg) and Pb (102 mg/kg) was observed in the high traffic and petrol pump areas, respectively. The exposure risk assessment strategies are helpful in predicting the potential health risk of the trace elements in the street dust. Selected receptors for risk assessment were infants, toddlers, children, teens, and adults. The calculated hazard quotient (HQ) for lifetime exposure was <1.0 for all the elements studied, indicating no risks from these elements for adults Among the receptors, toddlers were found to be more vulnerable, with HQ for Co, Cr, and Pb > 0.1. The finding predicts potential health risk to toddlers and children.  相似文献   

3.
Elemental concentrations and bioaccessibility were determined in background soils collected in Canada as part of the North American Geochemical Landscapes Project. The concentrations of As, Cr, Cu, Co, Ni and Zn were higher in the C-horizon (parent material) compared to 0–5 cm (surface soil), and this observation along with the regional distribution suggested that most of the variability in concentrations of these elements were governed by the bedrock characteristics. Unlike the above-stated elements, Pb and Cd concentrations were higher in the surface layer reflecting the potential effects of anthropogenic deposition. Elemental bioaccessibility was variable decreasing in the order Cd > Pb > Cu > Zn > Ni > Co > As > Cr for the surface soils. With the exception of As, bioaccessibility was generally higher in the C-horizon soils compared to the 0–5 cm soils. The differences in metal bioaccessibility between the 0–5 cm and the C-horizon and among the provinces may reflect geological processes and speciation. The mean, median or 95th percentile bioaccessibility for As, Cr, Cu, Co, Ni and Pb were all below 100 %, suggesting that the use of site-specific bioaccessibility results for these elements will yield more accurate estimation of the risk associated with oral bioavailability for sites where soil ingestion is the major contributor of human health risk.  相似文献   

4.
This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.  相似文献   

5.
Concentrations of eight trace metals (TMs) in road dust (RD) (particles?<?25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg?1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As?>?Pb?>?Cr?>?Mn?>?Cd?>?Zn?>?Ni?>?Cu for both children and adults.  相似文献   

6.
There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r 2 = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment.  相似文献   

7.
In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg?1 for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.  相似文献   

8.
Levels of Pb, Ni, Cr, Cu, Zn, and Cd in the glass screens (GS) and printed wiring boards (PWBs) of obsolete computer monitors (OCMs) were determined by flame atomic absorption spectrophotometry (FAAS) following standard digestion. Metal concentrations (mg kg?1) in GS were in the following ranges (medians in brackets): Pb ND – 3100 (46), Cd 0.5–2.6 (0.8), Cr ND – 18.7 (3.1), and Zn 8.1–600 (37) and in PWBs (mg kg?1): Pb 34,600 ± 17,000, Cd 11 ± 9, Cr 59 ± 45, Zn 15,900 ± 7800, Cu79,000 ± 22,600, and Ni 3200 ± 2500. In GS, the levels of the six metals were lower than their total threshold limit concentrations (TTLC), except for Pb with a TTLC of 1000 mg kg?1 in 10% of the samples. In the PWBs, the TTLC of Pb and Cu (2500 mg kg?1) was exceeded many fold. For Zn (5000 mg kg?1) and Ni (2000 mg kg?1); they were exceeded by 90% and 65%, respectively. For OCMs manufactured in 2001 and later, Pb and Zn levels in GS and Cr, Zn, and Ni in PWBs were significantly reduced.  相似文献   

9.
In this study, the role of aquaculture activity as a source of selected metals was analyzed. Significant differences in element content between cultured (Dicentrarchus labrax, Sparus aurata) and wild fishes as well as between fish muscle and their feed were detected. Higher concentrations of trace elements (i.e., As, Cu, Hg, Se) in wild fish tissues in comparison with cultured ones indicate additional sources of metals beside fish feed as natural and/or anthropogenic sources. Generally, mean Cd, Cu, Pb, Se, and Zn concentrations in cultured (0.016, 1.79, 0.14, 0.87, and 34.32 μg/g, respectively) and wild (0.011, 1.97, 0.10, 1.78, and 23,54 μg/g, respectively) fish samples were below the permissible levels, while mean As (2.57 μg/g in cultured, 4.77 μg/g in wild) and Cr (5.25 μg/g in cultured, 2.92 μg/g in wild) values exceeded those limits. Hg values were lower in cultured (0.17 μg/g) and higher in wild (1.04 μg/g) fish specimens. The highest elemental concentrations were observed in almost all fish samples from Kor?ula sampling site. The smallest cultured sea basses showed As (4.01 μg/g), Cr (49.10 μg/g), Pb (0.65 μg/g), and Zn (136 μg/g) concentrations above the recommended limits; however, values decreased as fish size increased. Therefore, the majority of metal concentrations in commercial fishes showed no problems for human consumption. Also calculated Se:Hg molar ratios (all >1) and selenium health benefit values (Se-HBVs) (all positive) showed that consumption of all observed fishes in human nutrition is not risk.  相似文献   

10.
In this study, we investigated the concentrations of ten trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As) and their trophodynamics in a benthic food chain of Deer Island, Northern Yellow Sea. The concentrations of Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As in the food chain ranged from 3.2 to 23.2, from 71 to 227, from 7.4 to 45.6, from 0.44 to 5.80, from 0.73 to 7.60, from 0.14 to 1.65, from 0.68 to 6.70, from 0.08 to 1.86, from 0.08 to 1.18, and from 0.24 to 3.92 mg kg?1 dry weight, respectively. Among these trace elements, the linear regression between the log-transformed concentrations of Hg and Cd and δ15N values showed statistically significant increase (p<0.05) with the slopes of 0.134 and 0.144, indicating biomagnification of Hg and Cd occurred in the benthic food chain of Deer Island. While the linear regression for other eight trace elements (Cu, Zn, Mn, Se, Ni, Cr, Pb and As) were characterised by extensive scatter with non-significant correlation coefficients (R 2=0.002–0.235) and slopes (p=0.079–0.875), indicating there were not biomagnified or biodiluted of these trace elements.  相似文献   

11.
The concentrations and chemical distributions of heavy metals (Cd, Cr, Ni, Zn, U, and V) in the Al-Jiza phosphate ores were investigated. Typically, the mean concentration values of Cd, Cr, Ni, U, and Zn are 15 ± 8, 109 ± 21, 34 ± 6, 211 ± 55, 142 ± 55, and 161 ± 57 mg kg?1, respectively. On the other hand, the encountered average concentration values of Cd, Cr, Ni, Zn, U, and V in the phosphate dust particles (<0.053) were found to be 22 ± 5, 179 ± 5, 67 ± 11, 441 ± 14, 225 ± 58, and 311 ± 9 mg kg?1, respectively. The contamination factors of U and Cr are greater than 1, indicating that these heavy metals could be potentially hazardous, if released to the environment. Multivariate statistical analysis allowed the identification of three main factors controlling the distribution of these heavy metals and the other chemical constituents. The extracted factors are as follows: francolite mineral factor, clay minerals factor, and diagenesis factor. Health risk assessments of non-cancerous effects in finer-grained size fraction that might be caused by contamination with the heavy elements have been calculated for both children and adults. The risk assessments in case of children for non-cancerous effects showed that U has values greater than the safe level of hazard index (HI = 1). In case of adults, the value of risk for U is also higher as compared to those of Cd, Ni, Cr, and Zn where it lies within the safe range of hazard index (HI < 1). Child health risk assessment indicates that children are more vulnerable to contaminants from phosphate mining than adults.  相似文献   

12.
A total of 49 sediment samples from New Bian River near the city of Suzhou in northern Anhui Province, China, were analyzed by inductively coupled plasma-mass spectrometry for As, Cr, Pb, Cu, Fe, Zn, Mn, and Ni. Geoaccumulation indices (Igeo) were used to assess the influence of human activities. Correlation analysis and principal component analysis were also performed. The geoaccumulation indices were in the order of As > Cu > Cr > Ni > Mn > Zn > Pb > Fe, the first four of which had values above 0.5. We considered New Bian River to be moderately contaminated with As, Cr, Cu, and Ni. Correlation analysis and principal component analysis indicated that the presence of Fe, Cu, Ni, Mn, Zn, and Pb in New Bian River was caused by soil or rock weathering, whereas the elevated levels of As and Cr depended upon urban, agricultural, and industrial factors. The sampling stations around the towns were dominated by Component 2 (As and Cr), and the sampling stations that distributed along New Bian River were dominated by Component 1 (Fe, Cu, Ni, Mn, Zn, and Pb).  相似文献   

13.
Surface sediment (0-15 cm) samples were collected from 31 different grid points throughout the Yilong Lake in April 2004. Samples were subjected to a total digestion technique and analyzed for As, Cd, Cr, Pb, Ni, Cu, and Zn in order to study spatial distribution characteristics based on Kriging method and assess their ecological risks posed by these heavy metals. Results showed that the mean concentrations of these heavy metals were lower than potential effect levels. Patches of higher heavy metal concentrations occurred in the inflow area of the Cheng River and northeast area nearby the road and railway. The higher concentrations of As and Cr also appeared in the east area (lake outlet), while the patches of lower concentrations were uniformly distributed at the southwest corner between Luosewan and Xiaoguoxi. The heavy metal loads such as As, Cd and Pb might come from the common sources due to industrial sewage and traffic pollution, while higher concentrations of Ni, Cr, and Zn in these sediments were dominated by parent rocks. However, Cu originated from both sources. Sediments with respect to As, Cd and Cu were grouped below the effect range low (ERL) at all sites, and with respect to Cr and Pb were grouped into the range from ERL to the effect range median (ERM) at more than 50% of sampling sites. The mean heavy metal toxic units in the Yilong Lake decreased following the order Pb > Cr > As > Ni > Zn > Cd > Cu, with higher contributions to the sum of toxic units of Pb, Cr and As.  相似文献   

14.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

15.
This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal–Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.  相似文献   

16.
Distributions of heavy metals in the sediments of South Korean harbors   总被引:1,自引:0,他引:1  
Bottom sediments of harbors in the South Korea have been long suspected for metal contamination due to ship-based and urban-based activities for the past several decades. A number of areas have been suspected to impair ecosystem services to the local residents and drawn complaints from main stakeholders. Twelve contamination suspected harbors were subject to evaluate the level of contamination of Cr, Ni, Cu, Zn, As, Cd, Pb and Hg. The level of sediment contamination for each metal was evaluated comparing the relative enrichment of a given metal to pollution-insensitive aluminum. Regional background concentration of a given metal was also determined based on its down core measurement and sediment texture. Ecological risk posed by the presence of heavy metals was evaluated using the sediment quality guidelines (SQGs) developed by United States National Ocean and Atmosphere Administration (US NOAA) as benchmarks for evaluating sediment chemistry to aquatic organisms. Cu, Zn, Cd, Pb and Hg in the surface sediment were found to be higher than a factor of 1.5 than background sediments, and the overall metal contaminations of surface sediment can be regarded as medium-high- to high-priority sites in the sense of SQGs.  相似文献   

17.
Bottom sediments of harbors in the South Korea have been long suspected for metal contamination due to ship-based and urban-based activities for the past several decades. A number of areas have been suspected to impair ecosystem services to the local residents and drawn complaints from main stakeholders. Twelve contamination suspected harbors were subject to evaluate the level of contamination of Cr, Ni, Cu, Zn, As, Cd, Pb and Hg. The level of sediment contamination for each metal was evaluated comparing the relative enrichment of a given metal to pollution-insensitive aluminum. Regional background concentration of a given metal was also determined based on its down core measurement and sediment texture. Ecological risk posed by the presence of heavy metals was evaluated using the sediment quality guidelines (SQGs) developed by United States National Ocean and Atmosphere Administration (US NOAA) as benchmarks for evaluating sediment chemistry to aquatic organisms. Cu, Zn, Cd, Pb and Hg in the surface sediment were found to be higher than a factor of 1.5 than background sediments, and the overall metal contaminations of surface sediment can be regarded as medium–high- to high-priority sites in the sense of SQGs.  相似文献   

18.
Total concentrations of Cr, Ni, Cu, Zn, Cd and Pb in surface sediments were determined to investigate the regional trends of heavy metal contamination in 11 coastal areas in Korea. Enrichment factor (EF) of heavy metals was calculated by comparing the level of their regional background. The averages of EF values in study areas were 0.99 for Cr, 1.05 for Ni, 4.23 for Cu, 1.80 for Zn, 3.92 for Cd and 1.54 for Pb, respectively. Dilute HCl extractions were useful to deduce the anthropogenic sources of heavy metals and the 1 M HCl extractable fractions of each metal varied from 0.3 to 37.3% for Cr, 1.9 to 66.3% for Ni, 4.2 to 92.9% for Cu, 7.1 to 99.7% for Zn, 10.9 to 98.9% for Cd and 15.0 to 99.1% for Pb. Comparing 1 M HCl extractable fraction to total concentration, large portions of Cu, Zn, Cd and Pb were present as potentially bioavailable fractions from anthropogenic input and were significantly correlated with their EF values showing r > 0.68.  相似文献   

19.
Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004–2.901, 0.053–54.818, 0.003–6.399 and 0.007–26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10?6 for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.  相似文献   

20.
A trace elements study of various samples from the Keana brines field, middle Benue Trough was carried-out to determine the extent to which Pb–Zn–S and BaSO4 mineralisations have affected the quality of the brines and the waters in the area. Different sample media such as well-water, pond water, brine spring pool water, stream water, stream sediments etc. were analysed. Geochemical results show that Cu, Zn, Pb, As and S are concentrated in the waters (0.3, 0.36, 0.05, 0.07 and 1 1.5 ppm respectively). These elements are more concentrated in both the spring and pond waters, suggesting that the spring water could have acted as the transport medium for these elements released from deep-seated sources. Transitions elements (Ti, V, Cr, Fe, Co, Ni and Sr) are concentrated in the waters. Compared to the World Health Organization (WHO) admissible limits, the well waters present very high concentrations in Cd (0.56 ppm) and Sb (0.40 ppm) (200× and 70× WHO admissible values respectively). There is a preferential concentration of transition elements (Ti, V, Fe, Co and Ni) in the sediments (41.38, 362, 52.21, 269 and 54 ppm respectively) than in the waters (0.70, 0.05, 5.6, 0.04 and 0.02 ppm respectively). Similarly, Cu, Zn, Pb and As are concentrated in the sediments (44, 72, 41 and 14 ppm respectively). The concentrations of transition elements (Ti, V, Cr, Fe, Co and Ni) in the refined salt were highly elevated (784, 363, 283, 105, 59.2 and 42.6 ppm respectively) (7000–10,000× well water). Similarly, the concentrations of As, Pb, Br and Sr in the refined salt were also alarming (11.6, 16.4, 16.4 and 122 ppm respectively), (1000, 700, 3000 and 20,000× well water values respectively). S on the other hand is absent. One of the striking features is the absence of I, Cd, Sb and Se in the refined salt crystals which were detected in the waters and the brines. Compared to WHO admissible values, the refined salt crystal concentrations for Ni (426 ppm) and Cr (283 ppm) were also very high (2000× WHO values respectively) and to a lesser extent Cu (26.9 ppm) and Zn (21.7 ppm) (12 and 7× WHO values respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号