首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract: We analyzed the structure and composition of a bird assemblage in a fragmented relict temperate forest located in northcentral Chile ( Fray Jorge National Park). In terms of species composition, the bird assemblage we found in Fray Jorge was more similar to southern temperate forest sites, located more than 1200 km south of Fray Jorge, than to localities found in nearby scrub habitats. The relict character and long-term isolation of the Fray Jorge forest provides a natural experiment with which to establish the potential long-term effects of fragmentation and isolation on southern Chilean temperate forests. Between May 1996 and March 1997, we conducted seasonal surveys of birds in six forest fragments, ranging in size from 0.5 to 22.5 ha, at Fray Jorge. The number of bird species at each forest fragment was positively correlated with fragment area during all seasons. The relict forest system had a steeper species-area slope than that reported for similar temperate-forest bird assemblages in forest fragments within Chiloé Island and for islands across the Chiloé Archipelago in southern Chile. In this regard, this bird fauna resembled a depauperate oceanic archipelago. This difference in area effects is likely a consequence of the minimization of rescue effects because of the absence of large source forest areas nearby and the long-term isolation of the system. In addition, the distribution of species among forest fragments in Fray Jorge was not random, showing a nested subset pattern. Thus, some species occur across all fragments, regardless of their area, and therefore are less affected by habitat fragmentation and less prone to local extinction. These results suggest that, for south-temperate forest birds, large fragments (or reserves) should afford better protection against extinction than small forest patches.  相似文献   

2.
Long-Term Avifaunal Impoverishment in an Isolated Tropical Woodlot   总被引:3,自引:0,他引:3  
Abstract:  Long-term (>50 years) extinction patterns and processes in isolated tropical forest patches are poorly understood. Considering that forest fragments are rapidly becoming the common feature of most tropical landscapes, data on the long-term conservation value of such fragments are urgently needed. We report on avifaunal turnover in a tropical woodlot (Bogor Botanical Gardens; 86 ha; 54% native and 46% introduced plants; mean 83,649 visitors/month) that has been surveyed several times before and after its isolation in 1936. By 2004 the original avifaunal richness of this woodlot declined by 59% (97 to 40 species) and its forest-dependent avifauna declined by 60% (30 to 12 species). Large-bodied birds were particularly prone to extinction before 1987, but following this time none of the species traits we studied could be considered predictive of extinction proneness. All seven forest-dependent bird species that attempted to colonize this woodlot by 1987 perished thereafter. Our results show that area reduction, isolation, intense human use, and perverse management (e.g., understory removal) of this patch have probably negatively affected the long-term sustainability of its forest avifauna.  相似文献   

3.
Extinction and Colonization of Birds on Habitat Islands   总被引:2,自引:1,他引:1  
Abstract: We used point-count and transect surveys to estimate the distribution and abundance of eight scrub-breeding bird species in 34 habitat fragments and the urban matrix in southern California. We then calculated local extinction and colonization rates by comparing our data with surveys conducted in 1987. We classified factors that influence extinction and colonization rates into two types: (1) extrinsic factors, which are characteristics of the habitat fragments such as area, age, and isolation and (2) intrinsic factors, which are characteristics of the species that inhabit fragments, such as body size and population density. Over the past decade, at least one species went locally extinct in over 50% of the fragments, and local extinctions were almost twice as common as colonizations. Fragment size and, to a lesser extent, fragment age were the most important extrinsic factors determining extinction and colonization. Density indices of scrub birds were the most important intrinsic factors determining extinction rates, predicting the number of sites occupied, the probability of local extinction, relative area requirements, and time to local extinction.  相似文献   

4.
Abstract. Small tropical forest fragments in the Eastern Usambara Mountains have lost understory bird species following forest fragmentation. The local extinction of these species is documented through a comparison of species number on nine smaller fores t fragments with species number on a tenth larger control forest site. The number of species captured in the control forest site is significantly larger than the number captured in eight of the nine smaller forest fragments under an equivalent capture effort. Forest-dependent understory species vary greatly in their vulnerability to forest fragmentation. Relatively rare species and forest interior species are the avifauna most adversely affected by forest fragmentation. A concerted effort should be made to protect the existing corridors of native forest that link established forest reserves in the Eastern Usambara Mountains.  相似文献   

5.
Abstract: Subsistence game hunting has profound negative effects on the species diversity, standing biomass, and size structure of vertebrate assemblages in Amazonian forests that otherwise remain largely undisturbed. These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of  ) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments—estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia—clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely.  相似文献   

6.
We sampled understory hummingbirds in Amazonian forest fragments from before isolation through nine years after isolation. We recorded 377 captures of eight species in five 1-ha fragments and four 10-ha fragments. The three species netted before isolation, Phaethornis superciliosus, Phaethornis bourcieri , and Thalurania furcata , were nearly equally abundant at that time. After isolation abundance of P. bourcieri and T. furcata did not change, but P. superciliosus became nearly twice as common. Five additional species that were netted only after isolation represented about 10% of the post-isolation sample. The species recorded only after isolation were forest species usually found above the levels of nets; fragments were not colonized by nonforest species. Use of fragments did not differ between 1- and 10-ha fragments. The landscape surrounding the fragments included active cattle pasture, abandoned pasture, and Cecropia -dominated second growth, but this variation had little effect on use of fragments by hummingbirds. The results suggest that these understory hummingbirds can persist in a matrix of fragments, secondary growth, and large forest patches. This response is much different than that of the insectivorous birds that dominate the understory bird community at the site, which are much more vulnerable to fragmentation.  相似文献   

7.
Abstract:  Little is known about how the surrounding modified matrix affects tree recruitment in fragmented forests. We contrasted effects of two different matrix types, Vismia - and Cecropia -dominated regrowth, on recruitment of pioneer tree species in forest fragments in central Amazonia. Our analyses were based on 22, 1-ha plots in seven experimental forest fragments ranging in size from 1 to 100 ha. By 13 to 17 years after fragmentation, the population density of pioneer trees was significantly higher in plots surrounded by Vismia regrowth than in plots surrounded by Cecropia regrowth, and the species composition and dominance of pioneers differed markedly between the two matrix types. Cecropia sciadophylla was the most abundant pioneer in fragments surrounded by Cecropia regrowth (constituting nearly 50% of all pioneer trees), whereas densities of species in Vismia -surrounded fragments were distributed more evenly. Thus the surrounding matrix had a strong influence on patterns of tree recruitment in Amazonian forest fragments.  相似文献   

8.
Abstract:  The rainforests of the Amazon basin are being cut by humans at a rate >20,000 km2/year, leading to smaller and more isolated patches of forest, with remaining fragments often in the range of 1–100 ha. We analyzed samples of understory birds collected over 20 years from a standardized mist-netting program in 1– to 100-ha rainforest fragments in a dynamic Amazonian landscape near Manaus, Brazil. Across bird guilds, the condition of second growth immediately surrounding fragments was often as important as fragment size or local forest cover in explaining variation in abundance. Some fragments surrounded by 100 m of open pasture showed reductions in insectivorous bird abundance of over 95%, even in landscapes dominated by continuous forest and old second growth. These extreme reductions may be typical throughout Amazonia in small (≤10 ha), isolated fragments of rainforest. Abundance for some guilds returned to preisolation levels in 10- and 100-ha fragments connected to continuous forest by 20-year-old second growth. Our results show that the consequences of Amazonian forest loss cannot be accurately described without explicit consideration of vegetation dynamics in matrix habitat. Any dichotomous classification of the landscape into "forest" and "nonforest" misses essential information about the matrix.  相似文献   

9.
Abstract:  To better understand responses of reptiles and amphibians to forest fragmentation in the lowland Neotropics, we examined community and population structure of frogs and lizards in the fragmented landscape surrounding La Selva Biological Station in the Sarapiquí region of northeastern Costa Rica. We used diurnal quadrats and nocturnal transects to sample frogs and lizards in nine forest fragments (1–7 ha each) and La Selva (1100 ha). Species richness in all fragments combined was 85% of that found in La Selva with comparable sampling effort. Richness varied from 10 to 24 species among forest fragments, compared with 36 species at La Selva. Lizard density was higher and frog density was lower in forest fragments than in La Selva. Community composition varied among sites and by fragment size class, and species occurrence was nested with respect to fragment area. Isolation and habitat variables did not significantly affect species richness, composition, or nestedness. We classified 34% of species as fragmentation sensitive because they were absent or occurred at low densities in fragments. Nevertheless, the relatively high diversity observed in the entire set of fragments indicates that preserving a network of small forest patches may be of considerable conservation value to the amphibians and reptiles of this region.  相似文献   

10.
Low Recruitment of Trees Dispersed by Animals in African Forest Fragments   总被引:7,自引:0,他引:7  
Abstract: We investigated the effects of forest fragmentation on the disappearance of fruit-eating animals and the recruitment of animal-, wind-, and gravity-dispersed trees in 80-year-old forest patches in the East Usambara Mountains of Tanzania. We compared adult and juvenile trees in forest transects in a 3500–ha submontane forest with those in four forest fragments of 521, 30, 9, and 0.5 ha. Preliminary results show that recruitment of seedlings and juveniles of 31 animal-dispersed tree species was more than three times greater in continuous forest and large forest fragments (≥30 ha) than in small forest fragments (≤9 ha), whereas recruitment of eight wind- and gravity-dispersed trees of the forest interior was unaffected. Recruitment of 10 endemic, animal-dispersed tree species was 40 times lower in small fragments than in continuous forest or large fragments. Counts of diurnal primates and birds in all five sites indicated that frugivorous species have declined with decreasing fragment size. These results are consistent with the idea that loss of dispersal agents depresses tree recruitment in the course of forest fragmentation.  相似文献   

11.
The native vascular plant flora of the Republic of Singapore has suffered the extinction of 594 out of a total 2277 species. These represent local, not global, species extinctions. Coastal habitats, including mangroves, have lost 39% of their species, while inland forests have last 29%. Epiphytic species (62% loss) appear particularly prone to extinction, which is reflected in a similar disposition exhibited by the Orchidaceae. Deforestation and disturbance have been the main cause of plant species extinction in Singapore. The rich mangrove epiphyte flora has been totally exterminated, and a number of tree species are reduced to populations of a few mature individuals. Many more species continue to survive than the species-area relationship would predict given the 99.8% loss of primary forest. This is interpreted as a result of the failure of equilibrium to be achieved yet in the remnant forest fragments, even after more than a century of isolation. Singapore's secondary forests appear to accrete plant diversity very slowly, even if contiguous with primary forest areas. We conclude that remnant fragments of primary tropical forest, even of very small size, can play a major role in the conservation of tropical biodiversity. The patterns of extinction observed in Singapore indicate that coastal and estuarine sites are in greatest demand for development and therefore must be given high priority for conservation despite their somewhat lower biodiversity. Epiphyte and orchid diversity appear to be very good indicators of the degree of disturbance suffered by a habitat in the humid tropics.  相似文献   

12.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

13.
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of São Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands.  相似文献   

14.
Habitat fragmentation affects species distribution and abundance, and drives extinctions. Escalated tropical deforestation and fragmentation have confined many species populations to habitat remnants. How worthwhile is it to invest scarce resources in conserving habitat remnants within densely settled production landscapes? Are these fragments fated to lose species anyway? If not, do other ecological, anthropogenic, and species‐related factors mitigate the effect of fragmentation and offer conservation opportunities? We evaluated, using generalized linear models in an information‐theoretic framework, the effect of local‐ and landscape‐scale factors on the richness, abundance, distribution, and local extinction of 6 primate species in 42 lowland tropical rainforest fragments of the Upper Brahmaputra Valley, northeastern India. On average, the forest fragments lost at least one species in the last 30 years but retained half their original species complement. Species richness declined as proportion of habitat lost increased but was not significantly affected by fragment size and isolation. The occurrence of western hoolock gibbon (Hoolock hoolock) and capped langur (Trachypithecus pileatus) in fragments was inversely related to their isolation and loss of habitat, respectively. Fragment area determined stump‐tailed (Macaca arctoides) and northern pig‐tailed macaque occurrence (Macaca leonina). Assamese macaque (Macaca assamensis) distribution was affected negatively by illegal tree felling, and rhesus macaque (Macaca mulatta) abundance increased as habitat heterogeneity increased. Primate extinction in a fragment was primarily governed by the extent of divergence in its food tree species richness from that in contiguous forests. We suggest the conservation value of these fragments is high because collectively they retained the entire original species pool and individually retained half of it, even a century after fragmentation. Given the extensive habitat and species loss, however, these fragments urgently require protection and active ecological restoration to sustain this rich primate assemblage. Correlaciones Locales y de Paisaje de la Distribución y Persistencia de Primates en los Bosques Lluviosos Remanentes en el Valle del Alto Brahmaputra, Noreste de India  相似文献   

15.
Abstract:  Few researchers have investigated the synergistic effects of tropical forest fragmentation and disturbance on species persistence and abundance. We examined effects of both forest-patch metrics and forest disturbance in determining richness and abundance of midsized to large-bodied mammal species in a highly fragmented Amazonian forest landscape. Twenty-one forest fragments, ranging from 2 to 14,480 ha, and two continuous forest sites were sampled based on sightings, tracks, line-transect censuses, armadillo burrow censuses, and camera trapping. Patch occupancy of 37 species recorded ranged from 4% to all forest sites surveyed. Forest fragment size was the strongest predictor of species persistence, explaining 90% of the variation in species richness. Information-theoretic analysis confirmed that fragment area was the most important explanatory variable for the overall species richness and abundance of mammal species, followed by surface fires, which affected the abundance of seven species. Large mammal species were typically absent from fragments <100 ha, whereas some ubiquitous species were favored by fragmentation, exhibiting hyperabundance in small patches. Our findings highlight the importance of large (>10,000 ha), relatively undisturbed forest patches to maximize persistence and maintain baseline abundances of Neotropical forest mammal species.  相似文献   

16.
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world's biodiversity hot spots, at the Plateau of São Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design.Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species.Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes.  相似文献   

17.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

18.
Abstract:  Habitat fragmentation causes extinction of local animal populations by decreasing the amount of viable "core" habitat area and increasing edge effects. It is widely accepted that larger fragments make better nature reserves because core-dwelling species have a larger amount of suitable habitat. Nevertheless, fragments in real landscapes have complex, irregular shapes. We modeled the population sizes of species that have a representative range of preferences for or aversions to habitat edges at five spatial scales (within 10, 32, 100, 320, and 1000 m of an edge) in a nation-wide analysis of forest remnants in New Zealand. We hypothesized that the irregular shapes of fragments in real landscapes should generate statistically significant correlations between population density and fragment area, purely as a "geometric" effect of varying species responses to the distribution of edge habitat. Irregularly shaped fragments consistently reduced the population size of core-dwelling species by 10–100%, depending on the scale over which species responded to habitat edges. Moreover, core populations within individual fragments were spatially discontinuous, containing multiple, disjunct populations that inhabited small spatial areas and had reduced population size. The geometric effect was highly nonlinear and depended on the range of fragment sizes sampled and the scale at which species responded to habitat edges. Fragment shape played a strong role in determining population size in fragmented landscapes; thus, habitat restoration efforts may be more effective if they focus on connecting disjunct cores rather than isolated fragments.  相似文献   

19.
Abstract:  Species-area relationships and island biogeography theory are commonly used to predict how species richness will decline with fragmentation. There are a variety of largely untested assumptions in these approaches, including the assumptions that populations are distributed uniformly before fragmentation, and that local extinctions are due to effects of small population sizes. If populations are not distributed uniformly, then populations can be abundant locally but rare globally. This would cause extinction rates to be smaller than predicted. We tested extinction theory by developing estimates of the number of plant species that should be present in small tallgrass prairie fragments and then testing the uniformity assumption by partitioning species richness into α (within site) and β (among site) components in Iowa prairies. Many more native prairie plant species were present in surveys of prairie fragments (491) than was predicted based on theory (27–207). A large proportion (75%) of the total species richness was β richness. We suggest that the high proportion of β richness was responsible for the shallow species-area slopes and the lower than expected number of species losses and that a better understanding of what determines β diversity will improve predictions of fragmentation effects on richness of plants. We also suggest that plants in prairie remnants may be best conserved by protecting different prairie types rather than by protecting a few large areas containing a single prairie type.  相似文献   

20.
Abstract:  Beta diversity, or the turnover in species composition among sampling sites in a region, is an important criterion for obtaining adequate representation of regional biodiversity in systems of protected areas. Recently, the additive model for partitioning regional (gamma) diversity (in opposition to the multiplicative model) has been proposed because it allows a direct measure of the contribution of beta diversity to gamma diversity. We determined avian beta diversity along latitudinal (among neighboring river drainages) and elevational axes in a 1347-km2 region on the western slope of the Central Cordillera of the Colombian Andes, where a regional system of protected areas is being designed. We then compared avian beta diversity between sites based on rapid versus long-term (>1 year) inventories and between fragmented sites versus continuous forest. Overall, beta diversity represented 63.1% of gamma diversity among 16 sites. Elevational differences in species composition accounted for 43.3% of regional diversity, whereas differences among drainages accounted for 19.8%. A complementary cluster analysis showed that sites grouped by elevational zones. Rapid inventories overestimated beta diversity because of sampling effects, but the effect was biologically small. Estimators of species richness derived from species accumulation curves provided a useful alternative to compensate for undersampling in short-term surveys. Forest fragmentation increased beta diversity because of differential local extinction of populations. Nevertheless, in our region, forest fragments contributed to gamma diversity because they contained complementary sets of species. More importantly, they contained populations of special-interest species. Although the region is relatively small, our analyses indicate that spatial differentiation of the biota is an important factor for deciding number and location of protected areas in the Andean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号