首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During house hunting, honeybee, Apis melli- fera, workers perform the vibration signal, which may function in a modulatory manner to influence several aspects of nestsite selection and colony movement. We examined the role of the vibration signal in the house-hunting process of seven honeybee swarms. The signal was performed by a small proportion of the older bees, and 20% of the vibrating bees also performed waggle dances for nestsites. Compared to non-vibrating controls, vibrating bees exhibited increased rates of locomotion, were more likely to move into the interiors of the swarms, and were more likely to fly from the clusters and perform waggle dances. Recipients responded to the signal with increased locomotion and were more likely than non- vibrated controls to fly from the swarms. Because vibration signals were intermixed with waggle dances by some vibrators, and because they stimulated flight in recipients, the signals may have enhanced nestsite scouting and recruitment early in the house-hunting process. All swarms exhibited increased vibration activity within 0.5–1 h of departure. During these final periods, numerous vibrating bees wove repeatedly in and out of the clusters while signaling and motion on the swarms increased until it culminated in mass flight. The peaks of vibration activity observed at the end of the house-hunting process may therefore have activated the entire swarm for liftoff once a new nestsite had been selected. Thus, the vibration signal may help to integrate the behavior of numerous groups of workers during nestsite selection and colony relocation. Received: 17 January 2000 / Received in revised form: 5 April 2000 / Accepted: 3 May 2000  相似文献   

2.
This study considers the mystery of how the scout bees in a honey bee swarm know when they have completed their group decision making regarding the swarm's new nest site. More specifically, we investigated how the scouts sense when it is appropriate for them to begin producing the worker piping signals that stimulate their swarm-mates to prepare for the flight to their new home. We tested two hypotheses: "consensus sensing," the scouts noting when all the bees performing waggle dances are advertising just one site; and "quorum sensing," the scouts noting when one site is being visited by a sufficiently large number of scouts. Our test involved monitoring four swarms as they discovered, recruited to, and chose between two nest boxes and their scouts started producing piping signals. We found that a consensus among the dancers was neither necessary nor sufficient for the start of worker piping, which indicates that the consensus sensing hypothesis is false. We also found that a buildup of 10–15 or more bees at one of the nest boxes was consistently associated with the start of worker piping, which indicates that the quorum sensing hypothesis may be true. In considering why the scout bees rely on reaching a quorum rather than a consensus as their cue of when to start preparing for liftoff, we suggest that quorum sensing may provide a better balance between accuracy and speed in decision making. In short, the bees appear to begin preparations for liftoff as soon as enough of the scout bees, but not all of them, have approved of one of the potential nest sites.
Thomas D. SeeleyEmail: Fax: +1-607-2544308
  相似文献   

3.
4.
Speed-accuracy tradeoffs are a common feature of decision-making processes, both in individual animals and in groups of animals working together to reach a single collective decision. Individual organisms display consistent differences in their “impulsivity,” and vary in their tendency to make rapid, impulsive choices as opposed to slower, more accurate decisions. However, we do not yet know whether groups of animals consistently differ in their tendency to prioritize decision speed over accuracy. We challenged 17 swarms of honey bees (Apis mellifera) to simultaneously choose a new nest site in each of three locations, and measured their decision speeds in each trial. We found that swarms displayed consistent personality differences in the number of waggle dances and shaking signals they performed and in how actively they scouted for new nest sites. However, swarms did not consistently differ in how long they took to choose a nest site. We suggest that house-hunting A. mellifera swarms may place an especially high emphasis on decision accuracy when choosing a nest site, and that chance events—such as the time when each swarm discovers a sufficiently high-quality nest site—may consequently play a greater role in determining a swarm’s decision speed than intrinsic characteristics such as a swarm’s “impulsivity.”  相似文献   

5.
This study addresses a question about the nest-site selection process of honeybee swarms: how do the scout bees know when to initiate the preparation for their swarm’s move to their new home? We tested the quorum-sensing hypothesis: that the scouts do this by noting when one of the potential nest sites under consideration is being visited by a sufficiently large number of scouts. A falsifiable prediction of this hypothesis is that delaying the formation of a quorum of scout bees at a swarm’s chosen nest cavity, while leaving the rest of the decision-making process undisturbed, should delay the start of worker piping (the prepare-for-takeoff signal) and thus the takeoff of the swarm. In paired trials, we presented each of four swarms once with five nest boxes close to each other at a site and once with a single nest box. The multiple nest boxes caused the scouts visiting the site to be dispersed among five identical nest cavities rather than concentrated at one. We observed long delays in the start of piping and the start of takeoff in the five-nest-box trials relative to the one-nest-box trials. These results provide strong support for the quorum-sensing hypothesis.  相似文献   

6.
The Red Dwarf honeybee (Apis florea) is one of two basal species in the genus Apis. A. florea differs from the well-studied Western Hive bee (Apis mellifera) in that it nests in the open rather than in cavities. This fundamental difference in nesting biology is likely to have implications for nest-site selection, the process by which a reproductive swarm selects a new site to live in. In A. mellifera, workers show a series of characteristic behaviors that allow the swarm to select the best nest site possible. Here, we describe the behavior of individual A. florea workers during the process of nest-site selection and show that it differs from that seen in A. mellifera. We analyzed a total of 1,459 waggle dances performed by 197 scouts in five separate swarms. Our results suggest that two fundamental aspects of the behavior of A. mellifera scouts—the process of dance decay and the process of repeated nest site evaluation—do not occur in A. florea. We also found that the piping signal used by A. mellifera scouts to signal that a quorum has been reached at the chosen site, is performed by both dancing and non-dancing bees in A. florea. Thus, the piping signal appears to serve a different purpose in A. florea. Our results illustrate how differences in nesting biology affect the behavior of individual bees during the nest-site selection process.  相似文献   

7.
Summary The stop signal of honey bees has long been regarded as a vibrational begging signal produced by dance followers to elicit food from waggle dancers (Esch 1964). On the basis of playback experiments and behavioral analysis, this study presents the following evidence for a different signal function. Stop signals (1) can be produced by tremble dancers, dance followers, and waggle dancers; (2) rarely elicit trophallaxis; and (3) evidently cause waggle dancers to leave the dance floor. Subsequent work by Kirchner (submitted) using vibrational playback experiments confirms the latter observation. When the colony's food storers are temporarily overwhelmed by a large nectar influx, returning foragers will search for prolonged periods before unloading food and consequently begin to tremble dance (Seeley 1992). In this study, tremble dancers were the major producer of stop signals on the dance floor. The stop signal may thus retard recruitment until balance is restored.  相似文献   

8.
Nest site selection in the open-nesting honeybee Apis florea   总被引:1,自引:0,他引:1  
We studied nest site selection by swarms of the red dwarf honeybee, Apis florea. By video recording and decoding all dances of four swarms, we were able to determine the direction and distances indicated by 1,239 dances performed by the bees. The bees also performed a total of 715 nondirectional dances; dances that were so brief that no directional information could be extracted. Even though dances converged over time to a smaller number of areas, in none of the swarms did dances converge to one site. As a result, even prior to lift off, bees performed dances indicating nest sites in several different directions. Two of four swarms traveled directly in what seemed to be the general direction indicated by the majority of dances in the half hour prior to swarm lift off. The other two traveled along circuitous routes in the general direction indicated by the dances. We suggest that nest site selection in A. florea has similar elements to nest site selection in the better-studied Apis mellifera. However, the observation that many more locations are indicated by dances prior to lift off also shows that there are fundamental differences between the two species.  相似文献   

9.
A swarm of honeybees provides a striking example of an animal group performing a synchronized departure for a new location; in this case, thousands of bees taking off at once to fly to a new home. However, the means by which this is achieved remain unclear. Shortly before takeoff, one hears a crescendo of a high-pitched mechanical signal—worker piping—so we explored the role of this signal in coordinating a swarm’s mass takeoff. Specifically, we examined whether exclusively nest site scouts produce the worker piping signal or whether it is produced in a relay or chain reaction fashion. We found no evidence that bees other than the scouts that have visited the swarm’s chosen nest site produce piping signals. This absence of relay communication in piping suggests that it is a signal that only primes swarms for takeoff and that the release of takeoff is triggered by some other signal or cue; perhaps the takeoff of bees on the swarm periphery as they reach flight temperature in response to piping.  相似文献   

10.
This study views a honey bee swarm as a supraorganismal entity which has been shaped by natural selection to be skilled at choosing a future home site. Prior studies of this decision-making process indicate that swarms attempt to use the best-of-N decision rule: sample some number (N) of alternatives and then select the best one. We tested how well swarms implement this decision rule by presenting them with an array of five nest boxes, only one of which was a high-quality (desirable) nest site; the other four were medium-quality (acceptable) sites. We found that swarms are reasonably good at carrying out the best-of-N decision rule: in four out of five trials, swarms selected the best site. In addition, we gained insights into how a swarm implements this decision rule. We found that when a scout bee returns to the swarm cluster and advertises a potential nest site with a waggle dance, she tunes the strength of her dance in relation to the quality of her site: the better the site, the stronger the dance. A dancing bee tunes her dance strength by adjusting the number of waggle-runs/dance, and she adjusts the number of waggle-runs/dance by changing both the duration and the rate of her waggle-run production. Moreover, we found that a dancing bee changes the rate of her waggle-run production by changing the mean duration of the return-phase portion of her dance circuits. Differences in return-phase duration underlie the impression that dances differ in liveliness. Although a honey bee swarm has bounded rationality (e.g., it lacks complete knowledge of the possible nesting sites), through its capacity for parallel processing it can choose a nest site without greatly reducing either the breadth or depth of its consideration of the alternative sites. Such thoroughness of information gathering and processing no doubt helps a swarm implement the best-of-N decision rule.  相似文献   

11.
We studied the extent to which worker honey bees acquire information from waggle dances throughout their careers as foragers. Small groups of foragers were monitored from time of orientation flights to time of death and all in-hive behaviors relating to foraging were recorded. In the context of a novice forager finding her first food source, 60% of the bees relied, at least in part, on acquiring information from waggle dances (being recruited) rather than searching independently (scouting). In the context of an experienced forager whose foraging has been interrupted, 37% of the time the bees resumed foraging by following waggle dances (being reactivated) rather than examining the food source on their own (inspecting). And in the context of an experienced forager engaged in foraging, 17% of the time the bees initiated a foraging trip by following a waggle dance. Such dance following was observed much more often after an unsuccessful than after a successful foraging trip. Successful foragers often followed dances just briefly, perhaps to confirm that the kind of flowers they had been visiting were still yielding forage. Overall, waggle dance following for food discovery accounted for 12–25% of all interactions with dancers (9% by novice foragers and 3–16% by experienced foragers) whereas dance following for reactivation and confirmation accounted for the other 75–88% (26% for reactivation and 49–62% for confirmation). We conclude that foragers make extensive use of the waggle dance not only to start work at new, unfamiliar food sources but also to resume work at old, familiar food sources.  相似文献   

12.
This study explores the meaning and functional design of a modulatory communication signal, the honey bee shaking signal, by addressing five questions: (I) who shakes, (II) when do they shake, (III) where do they shake, (IV) how do receivers respond to shaking, and (V) what conditions trigger shaking. Several results confirm the work of Schneider (1987) and Schneider et al. (1986a): (I) most shakers were foragers (at least 83%); (II) shaking exhibited a consistent temporal pattern with bees producing the most signals in the morning (0810–1150 hours) just prior to a peak in waggle dancing activity; and (IV) bees moved faster (by 75%) after receiving a shaking signal. However, this study differs from previous work by providing a long-term, temporal, spatial, and vector analysis of individual shaker behavior. (III) Bees producing shaking signals walked and delivered signals in all areas of the hive, but produced the most shaking signals directly above the waggle dance floor. (IV) Bees responded to the signal by changing their direction of movement. Prior to receiving a signal, bees selected from the waggle dance floor moved, on average, towards the hive exit. After receiving a signal, some bees continued moving towards the exit but others moved directly away from the exit. During equivalent observation periods, non-shaken bees exhibited a strong tendency to move towards the hive exit. (V) Renewed foraging activity after food dearth triggered shaking signals, and, the level of shaking is positively correlated with the duration of food dearth. However, shaking signal levels also increased in the morning before foraging had begun and in the late afternoon after foraging had ceased. This spontaneous afternoon peak has not previously been reported. The shaking signal consequently appears to convey the general message “reallocate labor to different activities” with receiver context specifying a more precise meaning. In the context of foraging, the shaking signal appears to activate (and perhaps deactivate) colony foraging preparations. The generally weak response elicited by modulatory signals such as the shaking signal may result from a high receiver response threshold which allows the receiver to integrate multiple sources of information and which thereby increases the probability that receiver actions will be appropriate to colony needs. Received: 21 March 1997 / Accepted after revision: 30 August 1997  相似文献   

13.
This study addresses a question that lies at the heart of understanding how the scouts in a honey bee swarm achieve unanimity in their dances, and so reach agreement in their choice of a future nest site: what causes the scouts that perform dances for the non-chosen sites to stop dancing for these sites? One possibility is that a scout stops dancing for a non-chosen site only after she follows a lively dance for another site, such as the site that is ultimately chosen. This hypothesis is contradicted by the finding that 23 out of 27 scouts (in 6 swarms) that danced initially for a non-chosen site stopped their dancing before they followed a dance for another site. Evidently, a scout that supports initially one of the non-chosen sites is likely to withdraw her support for this site even before she learns about another site. What causes her to do so? Close examination of the behavior of scouts revealed that they reduce the strength of their dancing (waggle runs/return to the swarm) for a given site over consecutive returns to the swarm. On average, the pattern of this reduction in dancing is strikingly linear, which suggests that it arises from an internal, neurophysiological process that automatically drives down a scout's motivation to dance for a site. Other results suggest that scouts from inferior sites start their dancing less strongly, and so cease their dancing more rapidly, than do scouts from superior sites. If so, then during the consensus-building process of the scouts, it is the support (the dancing) for inferior sites that is most likely to die out while it is the support for a superior site that is most likely to prevail.  相似文献   

14.
Floral scents are important information cues used to organize foraging-related tasks in honeybees. The waggle dance, apart from encoding spatial information about food sources, might facilitate the transfer of olfactory information by increasing the dissipation of volatiles brought back by successful foragers. By assuming that food scents are more intensive on specific body parts of returning foragers, i.e., the posterior legs of pollen foragers and mouthparts of nectar foragers, we quantified the interactions between hive mates and foragers during dances advertising different types of food sources. For natural sources, a higher proportion of hive mates contacted the hind legs of pollen dancers (where the pollen loads were located) with their heads compared to non-pollen dancers. On the other hand, the proportion of head-to-head contacts was higher for non-pollen foragers during the waggle runs. When the food scent was manipulated, dancers collecting scented sugar solution had a higher proportion of head-to-head contacts and a lower proportion around their hind legs compared to dancers collecting unscented solution. The presence of food odors did not affect in-hive behaviors of dancers, but it increased the number of trophallaxes in-between waggle runs (i.e., during circle phases). These results suggest that the honeybee dance facilitates the olfactory information transfer between incoming foragers and hive mates, and we propose that excitatory displays in other social insect species serve the same purpose. While recent empirical and theoretical findings suggested that the colony level foraging benefits of the spatial information encoded in the waggle dance vary seasonally and with habitats, the role of the dance as a compound signal not only indicating the presence of a profitable resource but also amplifying the information transfer regarding floral odors may be important under any ecological circumstances.  相似文献   

15.
Summary Female dance-flies, Empis borealis L., gather to swarm, and males carrying nuptial gifts visit swarms for mating. Field observations and experiments were performed on this behaviorally sex-role reversed species to test models of lekking behavior. The key predictions were: (1) female preference model: male visiting rate and mating rate should increase with the number of females in swarm (swarm size), (2) hotspot model: male visiting rate should be independent of swarm size, and (3) hotshot model: swarm size should be positively correlated with the body size of the largest female in swarm. We found that male visiting rate and mating rate increased with swarm size, and that mating rate per female increased with swarm size. Males also mated more often in larger swarms than in smaller ones. Both males and females visited swarm sites even in the absence of other individuals. When females were successively removed from swarm sites more males than females on average arrived at these sites: 2.25 males per female. When no individuals were present at the swarm site, arriving males moved on to another site, whereas arriving females generally stayed. Larger experimental swarm-markers attracted both more males and more females and even more males when swarming females were present. There was no correlation between mean or median female size in swarms and the number of females in swarms. Thus, the female preference model and the hotspot model were corroborated, while other models were judged unlikely to explain swarming behavior in E. borealis. Correspondence to: B.G. Svensson  相似文献   

16.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

17.
Upon leaving the hive, foragers carry a small amount of honey, which they subsequently consume to generate energy for flight. We investigated the relationship between waggle-phase duration and crop volume in foragers (both dancers and dance followers) leaving the hive. Our findings indicate that these variables were positively correlated in the two types of bee, suggesting that they were able to adjust the amount of food that they carry depending on the distance to a food source. We also found that dance followers left the hive with a larger amount of honey than dancers. We suggest two possible explanations: (1) dance followers have less information about the location of the food source than dancers, who have a better knowledge of the surrounding area; or (2) honeybees lack a precise calibration method for estimating energy needs from waggle-run duration. The effect of foraging experience was confirmed: bees decreased their honey load at departure with repeated trips to a sugar-syrup feeder. Honeybees showed a different pattern of change when the feeder provided soybean flour as a pollen substitute, possibly because honeybees use honey not only as an energy source but also as “glue” to form “balls” of pollen on their hind legs. Based on our observations that followers of sugar-syrup foragers carry a different amount of honey in their crop than followers of soybean-followers, we suggest that waggle dancers also convey information concerning food type.  相似文献   

18.
Returning honey bee foragers perform waggle dances to inform nestmate foragers about the presence, location and odour of profitable food sources and new nest sites. The aim of this study is to investigate how the characteristics of waggle dances for natural food sources and environmental factors affect dance follower behaviour. Because food source profitability tends to decrease with increasing foraging distance, we hypothesised that the attractiveness of a dance, measured as the number of dance followers and their attendance, decreases with increasing distance to the advertised food location. Additionally, we determined whether time of year and dance signal noise, quantified as the variation in waggle run direction and duration, affect dance follower behaviour. Our results suggest that bees follow fewer waggle runs as the food source distance increases, but that they invest more time in following each dance. This is because waggle run duration increases with increasing foraging distance. Followers responded to increased angular noise in dances indicating more distant food sources by following more waggle runs per dance than when angular noise was low. The number of dance followers per dancing bee was also affected by the time of year and varied among colonies. Our results provide evidence that both noise in the message, that is variation in the direction component, and the message itself, that is the distance of the advertised food location, affect dance following. These results indicate that dance followers may pay attention to the costs and benefits associated with using dance information.  相似文献   

19.
Summary The tremble dance is a behavior sometimes performed by honeybee foragers returning to the hive. The biological significance of this behavior was unclear until Seeley (1992) demonstrated that tremble dances occur mainly when a colony's nectar influx is so high that the foragers must undertake lenghty searches in order to find food storers to unload their nectar. He suggested that tremble dancing has the effect of stimulating additional bees to function as food-storers, thereby raising the colony's capacity for processing nectar. Here I describe vibrational signals emitted by the tremble dancers. Simulation experiments with artificial tremble dance sounds revealed that these sounds inhibited dancing and reduced recruitment to feeding sites. The results suggest that the tremble dance is a negative feedback system counterbalancing the positive feedback of recruitment by waggle dances. Thus, the tremble dance seems to affect not only the colony's nectar processing rate, but also its nectar intake rate.  相似文献   

20.
Ectatomma ruidum is an abundant soil-nesting Neotropical ant, which displays extensive behavioral flexibility during foraging activities. We studied here one unusual element of their behavioral repertoire: ambush predation. A worker of E. ruidum waits near a nest of a social sweat bee, Lasioglossum umbripenne, lunging at incoming bees, or less frequently, at departing bees. However, bees detected ambushing ants and modified their behavior. Dead ants placed at bees' nest entrances significantly decreased bee activity, indicating that bees recognized dead ants as potential predators. Neither simple black models (square and rectangle) nor olfactory cues had any effect on overall bee activity. A returning bee usually approached her entrance and immediately entered, but if an ant was waiting at the nest, a bee was significantly more likely to abort the first approach flight and then to re-approach the nest on the side opposite the ant's position. As models became increasingly ant-like, returning bees more frequently aborted their first approach flight, expressing other behaviors before entering nests. These behaviors included withdrawal followed by an approach from a different direction; zigzagging flights, either from a distance or close to the entrance or even a close inspection; landing a short distance from the nest, then approaching on foot or waiting for several seconds before entering. Ants responded with effective counter-behaviors. Behavioral flexibility in nest entering/exiting by L. umbripenne and in hunting strategy by E. ruidum shows the complexity of this predator-prey relationship, and illustrates the importance of information processing by both species involved in determining the outcome of the interspecific interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号