首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
多环芳烃(PAHs)是一类重要的持久性有毒有机污染物,而其衍生物SPAHs的毒性更高.通过对青岛市城阳污水处理厂采样,分析在其SBR/MBBR工艺中16种PAHs及硝基PAHs(NPAHs),甲基PAHs(MPAHs)以及氧基PAHs(OPAHs)的分布与去除.结果表明,16种PAHs及13种SPAHs均有检出,进水中,PAHs与SPAHs的总质量浓度分别为3 835. 14 ng·L~(-1)与6 889. 46 ng·L~(-1),其浓度远远高于其他地区的污水处理厂.在出水中,PAHs与SPAHs的总质量浓度为1 148. 18 ng·L~(-1)与1 724. 57 ng·L~(-1),去除率分别为70. 06%与74. 97%,可见SBR/MBBR工艺能有效去除PAHs与SPAHs.水相中PAHs的去除主要是针对低环多环芳烃(LMW-PAHs)的生物降解;而颗粒相中PAHs的去除主要依靠初沉池对LMW-PAHs的吸附沉淀以及生物单元对高环多环芳烃(HMW-PAHs)的生物吸附.对于SPAHs,MPAHs去除效果最好,去除率达89. 15%,颗粒吸附以及生物降解是其主要的去除机制;其次是OPAHs,去除率为63. 36%,在水相中主要依靠一级处理的颗粒吸附去除,在颗粒相中则主要在二级处理的生物吸附去除; NPAHs的去除率为48. 85%,主要在生物池中去除. SPAHs在SBR/MBBR工艺中的去除机制不尽相同,污水处理厂应根据不同处理工段PAHs与SPAHs的分布特征采取相应控制措施,而污泥中富集的PAHs与SPAHs远高于出水的排放量,因此,还应加强污泥中PAHs与SPAHs的管理.  相似文献   

2.
传统的多环芳烃治理方法主要是物理去除和化学去除。物理去除法主要是指客土法修复方式,或者是通过汽提、溶剂洗脱、热解吸、焚烧、填埋等措施去除或固定污染物。化学去除法通常是采用化学修复、光催化修复、电化学修复、微波分解及放射性辐射分解等修复技术将土壤中有机污染物分解或转化为无毒或低毒性的物质。物理化学修复存在着较为明显的缺陷,费用高昂,容易对环境产生二次污染,可操作性差,在大规模修复中存在运作困难。而生物去除法以其成本低、无二次污染、可大面积应用等独特优点越来越受到人们的重视,是目前最具潜力和较为理想的修复技术。  相似文献   

3.
多环芳烃及其衍生物在北京纳污河流中的分布及健康风险   总被引:1,自引:1,他引:1  
付璐婧  李一兵  乔梦  赵旭 《环境科学》2019,40(1):256-262
为探明北京5座污水处理厂出水及受纳河流中多环芳烃(PAHs)及其衍生物(SPAHs)的污染水平及健康风险水平,采用固相萃取-气相色谱质谱联用仪测定水样中的PAHs及SPAHs的质量浓度,分析其分布特征,同时使用毒性当量因子评价河流中PAHs的健康风险.结果表明,5座污水处理厂出水及受纳河流中PAHs及SPAHs总质量浓度分别为75~584 ng·L~(-1)和91~1822 ng·L~(-1).水样中PAHs以2和3环为主,占PAHs总量的23%~48%.本研究中的SPAHs包括三类物质:氧化PAHs(OPAHs)、甲基PAHs (MPAHs)和氯代PAHs (Cl PAHs).其中,OPAHs占ΣSPAHs的质量分数为75%,MPAHs、Cl PAHs占比总体较低,分别为12%、13%.通过对5条河流中PAHs进行毒性当量浓度计算,表明应在采暖季(12月)对高环PAHs污染引起重视.  相似文献   

4.
研究了长江攀枝花、宜宾、泸州、重庆、涪陵、三峡、岳阳、武汉、九江和南京共计10个重点江段枯水期和丰水期表层水中19种多环芳烃(PAHs)及其15种衍生物(SPAHs)的分布和来源,评估了长江PAHs类污染的健康风险及时空差异.结果表明,长江表层水中∑PAHs、∑SPAHs平均浓度分别为(147.3±59.8)、(73.2±29.7) ng·L-1,检出率分别为82.9%、69.5%,其中2~3环(S)PAHs所占比例为79%.在SPAHs中,∑NPAHs(硝基取代PAHs)、∑MPAHs(甲基取代PAHs)、∑OPAHs(氧化PAHs)的平均浓度分别为(27.0±4.5)、(24.7±15.5)、(17.1±11.9) ng·L-1.根据分子比值法及主成分分析可知,长江重点江段PAHs主要来源于生物质、化石及液体燃料燃烧,SPAHs主要来源于燃烧源和光化学转化,SPAHs及PAHs通过大气沉降汇入水体.采用毒性当量因子浓度计算对长江重点江段PAHs进行健康风险评估,结果表明在枯水期具有致癌性PAHs的∑TEQBaP值(苯并芘毒性当量)较高,其中岳阳、武汉江段的BaP毒性当量浓度高于我国地表水规定阈值,应当高度重视长江流域PAHs在枯水期引起的健康风险.  相似文献   

5.
珠江三角洲典型城市农业土壤及蔬菜中的多环芳烃分布   总被引:8,自引:2,他引:8  
2003年5月采集佛山顺德区8个乡镇36个土壤以及29个蔬菜样品,采用气相色谱.质谱仪对其中的16种优先控制多环芳烃(PAH.)进行分析.结果显示,蔬菜中PAHs的平均含量为183.0μg·kg-1,蔬菜中主要的PAHs为低分子量的菲、蒽、(屈)、芘.萘;不同种类蔬菜间PAHs含量差异很大,叶菜类较瓜果、豆荚类蔬菜中的PAHs含量高,这主要取决于蔬菜种类间不同的生长结构特征.蔬菜中PAHs含量与土壤中PAHs含量不相关,蔬菜中的PAHs含量与PAHs的辛醇/水分配系数(10gKow)大小密切相关.土壤中PAHs平均含量为233.0μg·kg-1土壤中主要的PAHs是菲、荧蒽、芘、(屈)、苯并[b]荧蒽,多数土壤中PAHs含量高于蔬菜中PAHs含量.土壤、蔬菜中分别以4环、2-3环PAHs占优势.  相似文献   

6.
环境中多环芳烃污染规律及其生物净化技术   总被引:22,自引:0,他引:22  
综述环境中多环芳烃的毒性、分布、积累状况、迁移变化的规律及其生物净化技术研究进展,提出利用生物技术治理环境中的PAHs的思路及具体措施。  相似文献   

7.
多环芳烃作为一类典型的持久性有毒物质,一直是环境领域关注的热点和重点,有关多环芳烃衍生物的报道,尤其是有关大气中烷基和硝基多环芳烃的研究报道仍非常缺乏。本研究选取莱州湾刁龙嘴为采集区域,对大气颗粒相样品中16种母体多环芳烃(PAHs)、12种烷基多环芳烃(A–PAHs)和25种硝基多环芳烃(N–PAHs)进行分析。结果表明,16种母体多环芳烃(Σ16PAHs)的浓度范围为517.2 ~ 64124.8 pg/m3;12种烷基化多环芳烃(Σ12A–PAHs)的浓度范围为273.6 ~ 5897.3 pg/m3;25种硝基化多环芳烃(Σ25N–PAHs)的浓度范围为113.5 ~ 1032.3 pg/m3。3种类型多环芳烃的浓度和污染模式均表现出明显的季节变化特征,其中,夏季,2环、3环的PAHs、A–PAHs和N–PAHs比例相对较高,而冬季4环及以上单体的比例偏高。PAHs的特征比值表明,莱州湾刁龙嘴地区PAHs的来源主要以柴油、煤及生物质燃烧为主。Σ16PAHs、Σ12A–PAHs和Σ25N–PAHs与温度均呈现出显著的负相关性(R2 = 0.94,p < 0.01;R2 = 0.61, p < 0.01;R2 = 0.74,p < 0.01),说明温度是影响颗粒相吸附芳烃类物质的一个主要因素。此外,三者之间Pearson相关关系表明,PAHs及其衍生物表现出相同的污染来源和相似的环境行为。  相似文献   

8.
多环芳烃在环境中的行为   总被引:28,自引:0,他引:28  
董瑞斌  许东风 《环境与开发》1999,14(4):10-11,45
多环芳烃(PAHs)由于其致癌性和致突变性而受到广泛关注,文中介绍了多不玉烃在环境中的来源,分布和去向,环境中的多环芳烃主要来源于植物合成和化石燃料的燃烧,以往的研究表明多环芳烃在大气,土壤和植物中的浓度分别为1-610μg/m^3,10^3~10^6μg/kg和20~1000μg/kg,实验室研究表明某些植物要环境中的多环芳烃,并在植物体内移植,淋洗方法不能有效地除多环芳烃对蔬菜的污染,然而,环  相似文献   

9.
多环芳烃的污染及其生物修复   总被引:12,自引:0,他引:12  
多环芳烃(PAHs)是环境介质中普遍存在的难降解有机污染物,文中综述了目前国内外对PAHs的研究状况,重点阐述了它的来源分布、迁移转化、生物毒性、监测控制及其生物修复的研究进展等,从而为防治环境污染提供科学依据。  相似文献   

10.
地表水中多环芳烃迁移转化研究进展   总被引:3,自引:0,他引:3  
多环芳烃类(Polycyclic Aromatic Hydrocarbons,PAHs)物质是广泛存在于环境中的一类持久性有机污染物,具有难降解、易富集和"三致"的特点,可能严重危害人类健康和生态环境.文章主要阐述PAHs在环境中的污染,重点是对地表水环境的污染;总结PAHs在地表水环境中迁移转化研究的进展和成果,重点...  相似文献   

11.
南京大气中多环芳烃的相分布   总被引:3,自引:0,他引:3  
采用玻璃纤维滤膜(GF)和聚氨基甲酸乙酯泡膜(PUF)同时采集南京大气中颗粒态和气态上的多环芳烃(PAHs),用气质联用仪分析了16种优先控制的PAHs,研究了PAHs在南京大气中的相分布,研究结果表明,颗粒态和气态样品中16种PAHs的平均浓度值分别为20.49ng/m3和182.45ng/m3,2~3环的PAHs主要分布在气态中,而>4环的PAHs主要分布在颗粒态中。  相似文献   

12.
多环芳烃对海洋硅藻中肋骨条藻的光毒性效应   总被引:4,自引:0,他引:4  
许多生态毒理学研究尤其是对水生生物的毒性研究表明,阳光中的紫外辐射(UV)能够促进多环芳烃的生物毒性. 以长江口浮游植物群落中的常年主要优势种之一——中肋骨条藻(Skeletonema costatum)为实验材料,选择2个环的萘,3个环的菲和蒽,4个环的荧蒽和芘5种寡环多环芳烃,在实验室内比较了它们在没有UV辐射和有UV辐射下对中肋骨条藻的毒性效应. 结果表明:在没有UV照射下,萘、菲、蒽、荧蒽和芘对中肋骨条藻的72 h EC50值分别比有UV照射下时高约1.9,8.4,13.0,6.5和5.7倍,其中蒽相差的倍数最大.在没有UV照射情况下,5种多环芳烃对中肋骨条藻种群生长的抑制作用强度表现为荧蒽>芘>蒽>菲>萘;而当系统中加入UV照射后,毒性强度变为荧蒽≈蒽>芘>菲>萘,表明UV照射不仅能够促进多环芳烃对中肋骨条藻的毒性,也能够改变它们对中肋骨条藻的相对毒性.   相似文献   

13.
利用气相色谱-质谱法(GC-MS)测定新疆多段公路沿线和3个风景区植物和土壤中多环芳烃(PAHs)含量.结果表明,11个采样点的11个土壤样品Σ16PAHs含量为18.82~2153.54 ng·g-1,平均值为425.95 ng·g-1,36个采样点的59个植物样品中Σ16PAHs含量范围为9.93~748.30 ng·g-1,平均值为154.11 ng·g-1.植物样品中不同环数的PAHs平均含量高低次序为:低环(2~3环)>中环(4环)>高环(5~6环),土壤样品不同环数的PAHs平均含量高低次序为:中环(4环)>高环(5~6环)>低环(2~3环).特征比值法和主成分分析法分析得出,土壤中PAHs主要为燃烧和石油源,植物吸收的PAHs主要来源为木材燃烧和炼焦工业.健康风险评价结果表明,S323省道库尔勒段土壤PAHs对道路工作人员致癌风险值(CR)为1.26×10-6,存在潜在健康风险.  相似文献   

14.
北京东南郊污灌区PAHs垂向分布规律   总被引:5,自引:3,他引:5  
采用Eijkelkamp土壤采样器对北京东南郊污灌区进行了3个钻孔剖面采样,分析了土壤样品的理化参数,并且采用气相色谱-质谱联用仪对土壤样品的多环芳烃(PAHs)进行了定量分析,研究了土壤理化参数和16种PAHs从表层到5.5 m深的范围内垂向变化规律.结果表明,污灌区表层土壤中有14种PAHs检出,检出浓度在4~428 μg/kg之间,表层以下PAHs的检出种类显著减少,主要以2环和3环的萘、菲、芴、苊烯、二氢苊、荧蒽6种为主.粘粒含量、粘土矿物总量、阳离子交换容量以及总有机碳4个理化参数相互之间在垂向变化上具有一致性,均在0.05水平上显著相关.表层以下粘粒含量与低环PAHs在垂向含量变化也有较好的一致性,粘粒含量高的层位,PAHs含量也较高.从剖面PAHs含量变化可以判断,低环PAHs较易迁移,它们的迁移性强弱顺序为:二氢苊>芴>萘>菲>苊烯>荧蒽,其它高环PAHs难以迁移,仅在表层土壤中检出,说明在长期污灌条件下,迁移性较好的低环PAHs能够迁移到较深的土层中,有可能导致浅层地下水的污染.  相似文献   

15.
植物修复是一种利用植物修复环境污染物的方法 ,由于其费用低廉等特点正受到越来越多的关注。多环芳烃由于其毒性、致癌性和致畸性成为环境中一类重要的污染物。概述了植物修复的机制 ,并回顾近年来国内外关于植物修复多环芳烃方面的研究进展。  相似文献   

16.
几种表面活性剂对柴油及多环芳烃的增溶作用   总被引:5,自引:0,他引:5  
研究表面活性剂在多种柴油HOCs(疏水性有机物)组分共存条件下对PAHs(多环芳烃)的增溶作用.选用阴离子表面活性剂LAS(十二烷基苯磺酸钠)和SDS(十二烷基硫酸钠),非离子表面活性剂TX 100(曲拉通X-100)和TW 80(吐温80)及生物表面活性剂鼠李糖脂和烷基糖苷,评价表面活性剂对柴油的增溶效果,并筛选出LAS,TX 100和鼠李糖脂,进行柴油中PAHs的增溶试验.结果表明,表面活性剂对柴油增溶作用顺序为鼠李糖脂> TX 100 >烷基糖苷> TW 80> LAS>SDS.在多种柴油组分共存条件下,PAHs的表观溶解度与表面活性剂浓度具有良好的线性关系.表面活性剂对柴油中PAHs的增溶作用顺序为鼠李糖脂> TX 100 > LAS.鼠李糖脂具有较低的临界胶束浓度和较复杂的分子结构,能够形成更多、更大的胶束,有利于柴油及PAHs的增溶.   相似文献   

17.
澳门大气气溶胶中多环芳烃研究   总被引:15,自引:1,他引:15  
通过1995年和1998年澳门大气气溶胶中多环芳烃分析表明,1998年的有机污染程度是1995年的1.36~4.36倍,大气气溶胶中多环芳烃白天高于夜间,说明主要污染物为居民的工作、生活、商业、交通所排放。澳门商业交通功能区有机毒害污染较为严重,苯并(a)芘和苯并(a)蒽分别为1.56~8.10ng/m3和0.85~4.68ng/m3。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号