首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A graphical model presented here indicates that a nest-defending forager should stay closer to its nest, forage for shorter times per patch, and deliver smaller loads than predicated for delivery rate maximization. The effect is more pronounced farther from the nest, so that if nest defense is especially important, the predator should leave far patches sooner than near ones, and deliver smaller loads from farther away. Moreover, if the attack rate at the nest is increased, the defending forager should move closer and deliver smaller prey.Experimental attacks with stuffed specimens at Gila woodpecker (Melanerpes uropygialis) nests produced the predicted changes in the foraging behavior of males, but not of females.Mated pairs may work as a team to pursue simultaneously two conflicting goals—food delivery and nest protection—both of which affect the survivorship of the young. Sexual dimorphism in monogamous species may result in part from specialization in these roles.  相似文献   

2.
Among species where there is a risk to leaving offspring unattended, parents usually take alternating shifts guarding their young. However, they may occasionally exhibit brood neglect by leaving their offspring unattended at the nest. To investigate this phenomenon further, we examined the foraging behavior of the northern gannet (Morus bassanus) during chick-rearing. This species has a prolonged nestling period (13 weeks) and the single chick is usually guarded by one or other of its parents, because unattended chicks are frequently attacked by conspecifics. We tested the prediction that the foraging behavior of adults when they left their offspring alone at the nest (unattended trips) would differ in character to when adults left offspring with their partner (attended trips). Brood neglect typically occurred after a longer-than-average attendance period at the nest. Unattended trips were, on average, about half the duration of attended trips, and therefore much closer to the colony. There was also a difference in departure direction between attended and unattended trips, with unattended trips tending to be northeast of the colony. Chicks were fed by parents after both attended and unattended trips, but the frequency and the duration of unattended trips increased as chicks grew older whereas the duration of attended trips decreased as chicks grew. These results indicate that parents may be making a trade-off between risk of attack to their offspring and food-intake rate, and that the solution to this trade-off is dependent on chick age.Communicated by C. Brown  相似文献   

3.
Summary The behaviour of five adult wheatears (Oe. oenanthe) delivering prey (maggots and mealworms) from artificial patches to the nestlings was studied. The existence of a so-called loading effect was confirmed. Handling times for subsequent prey items increased with the number held in the beak, which led to a decrease in collecting rates with patch time and, in most cases, to positively accelerating loading functions when collecting times for prey items are plotted as a function of load size. All birds seemed to become more efficient at loading prey in the experimental patches during the course of the nestling period. Loading functions for maggots and mealworms were slightly different. When forcing the birds to visit several cups (only one item in each cup) and remove a layer of moss before reaching the prey (low-density patches), all birds took fewer prey and two of them stayed longer in them than in highdensity patches (one cup filled with prey items). This was due to an increase in search times with the number of prey held in the beak.From knowledge of the loading functions and travel times to the nest, it is possible to predict the optimal load sizes according to a mathematical solution of the delivery rate model of Orians and Pearson (1979). By transforming collecting and travel times to energy expenditures, it is also possible to derive predictions from an energy efficiency model (maximizing energy delivery per unit energy expended in a round-trip). The observed average load sizes did not differ significantly from those predicted by the delivery rate model, but they were significantly smaller in all cases than those predicted by the energy efficiency model. For birds feeding nestlings, it may be more important to sacrifice efficiency in energy expenditure in favour of greater delivery rates, thereby maximizing the growth rate of the young.  相似文献   

4.
Foragers show adaptive responses to changes within their environment, and such behavioural plasticity can be a significant driving force in speciation. We investigated how lactating Antarctic fur seals, Arctocephalus gazella, adapt their foraging within two contrasting ecosystems. Location and diving data were collected concurrently, between December 2003 and February 2004, from 43 seals at Bird Island, where krill, Euphausia superba, are the main prey, and 39 at Heard Island, where mostly fish are consumed. Seals at Heard Island were shorter and lighter than those at Bird Island and they spent longer at sea, dived more frequently and spent more time in the bottom phase of dives. Generalized additive mixed effects models showed that diving behaviours differed between the islands. Both populations exploited diel vertically migrating prey species but, on average, Heard Island seals dived deeper and exceeded their estimated aerobic dive limits. We propose that the recovery of the Heard Island population may be limited by the relative inaccessibility and scarcity of food, whereas at Bird Island, the presence of abundant krill resources helps sustain extremely high numbers of seals, even with increased intra- and inter-specific competition. Both populations of fur seals appear to be constrained by their physiological limits, in terms of their optimal diving behaviour. However, there does appear to be some flexibility in strategy at the level of trip with animals adjusting their time at sea and foraging effort, in order to maximize the rate of delivery of energy to their pups.  相似文献   

5.
It is well known that the risk of predation affects prey decision making. However, few studies have been concerned with the cues used by prey to assess this risk. Prey animals may use indirect environmental cues to assess predation hazard since direct evaluation may be dangerous. I studied the assessment of predation risk, manipulated via environmental illumination level, and the trade-off between foraging and predation hazard avoidance in the nocturnal rodentPhyllotis darwini (Rodentia: Cricetidae). In experimental arenas I simulated dark and full moon nights (which in nature correlate with low and high predation risk, respectively) and measured the immediate responses of animals to flyovers of a raptor model. Second, varying illumination only, I evaluated patch use, food consumption, central place foraging, and nocturnal variation of body weight. During flyover experiments, animals showed significantly more evasive reactions under full moon illumination than in moonless conditions. In the patch use experiments, rodents significantly increased their giving-up density and decreased their total food consumption under moonlight. On dark nights, rodents normally fed in the food patch, but when illumination was high they became central place foragers in large proportion. Moreover, the body weight of individuals decreased proportionately more during bright nights. These results strongly suggest thatP. darwini uses the level of environmental illumination as a cue to the risk of being preyed upon and may sacrifice part of its energy return to avoid risky situations.  相似文献   

6.
The Darwinian approach to behavior generates models that are widely used by anthropologists and archeologists. In this paper, I concentrate on a particular group of models based on cases in which a forager (or group of foragers) brings resources to a location known as a central place. I examine two topics in detail: (1) the economics of transporting a load to the central place, and (2) the extent to which items should be processed before they are brought back to the central place. In addition to presenting new results and bringing out common themes in archeology and behavioral ecology, I discuss problems with some of the models that have been used in archeology and offer suggestions for further work.  相似文献   

7.
Summary When the expected reward rate is continuously reduced by foraging in a patch, foragers may adjust their patch persistence times to maximize the average long-term reward rate. The marginal-value model predicts the optimal persistence time for this situation. But real foragers may be unable consistently to achieve a precise persistence time. If the costs of under- and over-persistence differ, or if the resulting distribution of persistence times is skewed, a sufficiently broad persistence-time distribution can substantially shift the actual optimum. Moreover, this error-constrained optimum depends on the variable used by the forager to decide when to leave the patch (e.g., on persistence time per se, cumulative number of prey eaten, or instantaneous feeding rate). Here, we analyze laboratory data from bluegill sunfish (Lepomis macrochirus) foraging on larval-midge prey (Chironomus riparius) in patches of artificial vegetation, and we explore some wider implications of a model that seems to fit the data. The bluegills stayed 4%–157% longer in patches than predicted by the marginal value theorem. This behavior closely matched numerical solutions based on the observed variability of persistence times and the assumption that departures were cued by instantaneous feeding rate. On the other hand, the other two mechanisms that we investigated (i.e., persistence time per se and cumulative number of prey eaten) predict weak to moderate underpersistence relative to the marginal-value predictions, patterns quite unlike those observed. Surprisingly, the instantaneous-rate mechanism yields roughly a 10% lower over-all maximal reward rate than would either of the other two departure-cuing mechanisms. The modeling analysis documents the considerable sensitivity of our results to (1) the departure-cuing mechanism, (2) the shape of the frequency distribution of the departure-cuing variable, (3) the way that the shape of this distribution shifts as its mean changes, and (4) the magnitudes of the foraging parameters. Offprint requests to: P.H. Crowley  相似文献   

8.
Animals pay opportunity costs when pursuing one of several mutually exclusive courses of action. We quantified the opportunity costs of conforming to the behaviour of others in foraging sticklebacks (Pungitius pungitius), using an arena in which they were given the option of shoaling in one area or searching for food in another. Fish foraging in the absence of stimulus conspecifics found the prey patch sooner and spent longer exploiting it than those in trials where a stimulus shoal was present. Furthermore, in trials where the stimulus shoal exhibited feeding cues, subjects approached them sooner and spent more time shoaling with them, exploring less of the arena than in trials where the stimulus shoal exhibited no such cues. This suggests sensitivity not only to the mere presence of conspecifics, but also to the social information that they produce. We also saw that groups of focal fish, compared to single individuals, were less influenced by the stimulus shoal and explored more of the arena, a behaviour that may be attributed to facilitation, competition or both. Such opportunity costs are likely to be offset by benefits such as reduced predation risk, and we discuss this in terms of the trade-offs associated with living in groups.  相似文献   

9.
Summary Workers of the ant Formica schaufussi forage as individuals and cooperate in groups to retrieve arthropod prey. In 2 sample years, group-transported prey were on average 6.8 and 4.7 times heavier than individually retrieved items, and the average loading ratios of groups were greater than the loading ratios of single foragers. Retrieval group size was adjusted to prey size, and prey transport velocity for individuals and groups tended to decrease with increasing prey weight. The efficiency of individual and group retrieval, estimated from calculations of the prey delivery rate to the nest (PDR) achieved by each foraging mode, varied as a function of prey size. Individual retrieval maximized PDR at a prey weight of 19.5 mg, and group transport maximized PDR at 190 mg. Although the PDR maxima of an individual in a group and a solitary forager were approximately equal, depending on prey size, group transport may maximize foraging efficiency. Group transport also decreased interference competition from sympatric ant species. Group-transported prey having a greater likelihood of successful retrieval were within the size range of prey that maximized foraging efficiency. Transport group size appeared to be more important in prey defense than in increasing prey transport velocity, suggesting an important role of group size in competitive ability.Offprint requests to: J.F.A. Traniello  相似文献   

10.
Lowe WH  Likens GE  McPeek MA  Buso DC 《Ecology》2006,87(2):334-339
There is growing recognition of the need to incorporate information on movement behavior in landscape-scale studies of dispersal. One way to do this is by using indirect indices of dispersal (e.g., genetic differentiation) to test predictions derived from direct data on movement behavior. Mark-recapture studies documented upstream-biased movement in the salamander Gyrinophilus porphyriticus (Plethodontidae). Based on this information, we hypothesized that gene flow in G. porphyriticus is affected by the slope of the stream. Specifically, because the energy required for upstream dispersal is positively related to slope, we predicted gene flow to be negatively related to change in elevation between sampling sites. Using amplified DNA fragment length polymorphisms among tissue samples from paired sites in nine streams in the Hubbard Brook Watershed, New Hampshire, USA, we found that genetic distances between downstream and upstream sites were positively related to change in elevation over standardized 1-km distances. This pattern of isolation by slope elucidates controls on population connectivity in stream networks and underscores the potential for specific behaviors to affect the genetic structure of species at the landscape scale. More broadly, our results show the value of combining direct data on movement behavior and indirect indices to assess patterns and consequences of dispersal in spatially complex ecosystems.  相似文献   

11.
Understanding and modelling insect pest dispersal is an important prerequisite for designing integrated pest management programs. Nevertheless, studies investigating the dispersal of small insects in natural conditions remain scarce mainly because of the difficulty of tracking the movements of these organisms. Here we propose to use Hierarchical Bayesian Modelling (HBM) framework to gain knowledge on hidden processes that cannot be observed directly in natura, such as insect landing and insect mortality, through the definition of latent variables. An HBM describing crop colonization by winged aphids was fitted to a large dataset of field observations issued from a long term survey at a wide scale of both aerial and field densities of the bird cherry-oat aphid Rhopalosiphum padi. This study provides the first evidence that suction trap data are reliable proxies of aphid colonizing rates in cereal fields in autumn and can be a nice alternative to the very time-consuming crop sampling. The proportion of winged aphids landing in cereal fields is shown to vary between regions according to the degree of investment of local R. padi population in sexual reproduction. Results also indicate that under autumnal field conditions, less than 5% of winged aphids survive more than 10 days after landing. This HBM provides the basis of a predictive model for aphid crop colonization that fully accounts for all sources of uncertainty. It should be of great value to improve the trust of users in any decision making systems.  相似文献   

12.
13.
Group foragers may be able to assess patch quality more efficiently by paying attention to the sampling activities of conspecifics foraging in the same patch. In a previous field experiment, we showed that starlings foraging on patches of hidden food could use the successful foraging activities of others to help them assess patch quality. In order to determine whether a starling could also use another individual’s lack of foraging success to assess and depart from empty patches more quickly, we carried out two experimental studies which compared the behaviour of captive starlings sampling artificial patches both when alone and when in pairs. Solitary starlings were first trained to assess patch quality in our experimental two-patch system, and were then tested on an empty patch both alone and with two types of partner bird. One partner sampled very few holes and thus provided a low amount of public information; the other sampled numerous holes and thus provided a high amount of public information. In experiment 1, we found no evidence of vicarious sampling. Subjects sampled a similar number of empty holes when alone as when with the low and high information partners; thus they continued to rely on their own personal information to make their patch departure decisions. In experiment 2, we modified the experimental patches, increasing the ease with which a bird could watch another’s sampling activities, and increasing the difficulty of acquiring accurate personal sampling information. This time, subjects apparently did use public information, sampling fewer empty holes before departure when with the high-information partner than when with the low-information partner, and sampling fewer holes when with the low-information partner than when alone. We suggest that the degree to which personal and public information are used is likely to depend both on a forager’s ability to remember where it has already sampled and on the type of environment in which foraging takes place. Received: 31 January 1995/Accepted after revision: 11 September 1995  相似文献   

14.
Although rewarded bees learn and remember colors and patterns, they have difficulty in learning to avoid negative stimuli such as decorated spider webs spun by Argiope argentata. A. argentata decorates its web with silk patterns that vary unpredictably (Fig. 1) and thus foraging insects that return to sites where spiders are found encounter new visual cues daily. Stingless bees can learn to avoid spider webs but avoidance-learning is slowed or inhibited by daily variation in web decorations (Figs. 3,4; Tables 1,2). In addition, even if bees learn to avoid decorated webs found in one location, they are unable to generalize learned-avoidance responses to similarly decorated webs found at other sites. A. argentata seems to have evolved a foraging behavior that is tied to the ways insects perceive and process information about their environment. Because of the evolutionary importance of bee-flower interdependence, the predatory behavior of web-decorating spiders may be difficult for natural selection to act against.  相似文献   

15.
Beaver–willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m−2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.  相似文献   

16.
Western sandpiper (Calidris mauri) predation was examined by concurrent experiments and direct observations of foraging behaviour on high intertidal mudflats of the Fraser River estuary, British Columbia. Western sandpipers foraged by either “pecking” on the surface (64% of observational time) or probing into sediment (29%). The first experiment (probe-mark method) consisted of collecting small-volume cores (21.2 cm3) of probed (experimental) and non-probed (control) sediment on the tidal flat, following a 22.5-min feeding period. The second experiment (exclosure method) involved deploying exclosures immediately prior to the feeding period and subsequent collection of cores from inside (control) and outside (experimental) the exclosures. Sediment cores were analysed for both macrofaunal and meiofaunal size fractions. Comparisons between macro- and meiofaunal invertebrate densities in experimental and control sediments revealed significant differences, attributed to shorebird predation, for both experiments. The probe-mark experiment detected the removal of large infaunal polychaetes (∼ 20 mm), while the exclosure experiment showed depletion of epifaunal harpacticoid copepods (0.063–0.5 mm). Predation on macrofaunal cumaceans was detected in both experiments. Invertebrates selected by western sandpipers neither fell within traditional infaunal size classifications (macro- vs. meiofauna; 500 μm delineation) nor corresponded to the highest densities of taxa. Rather, inference from experimental results and observations is that western sandpipers forage in two modes, by: (1) surface gleaning of epibenthic copepods and cumaceans in the macro- and meiofaunal size ranges and (2) selective probing for larger infauna, such as polychaetes. These findings were facilitated by the combination of methodologies employed. Received: 29 December 1999 / Accepted: 11 September 2000  相似文献   

17.
Experiments were conducted in the autumn and winter of 1992/93 to examine habitat use by juvenile (age 0+) Atlantic cod, Gadus morhua L., before, during and following exposure to a passive or actively foraging predator (age 3+ cod). Experiments presented groups of juvenile cod (n=5 fish/group) with one of two combinations of three substrates; (1) gravel, sand, and a patch of artificial kelp (kelp), or (2) cobble, sand, and kelp. Cobble is known to provide juvenile cod with a refuge from predation. Kelp was used to test the hypothesis that juvenile cod associate with fleshy macroalgae in nature because of the safety it provides from predators. There was little difference in habitat use by juvenile cod before, during or following exposure to a passive predator. Under these conditions, juvenile cod appeared to prefer finer grained mineral substrates and avoided the kelp. The extent of the juvenile response to a passive predator was to avoid the predator's location in the experimental tank. In contrast, juvenile cod showed a significant shift in habitat use when exposed to an actively foraging predator, hiding in cobble or, when cobble was not available, in kelp. Use of both these habitats resulted in a significant reduction in predation risk to the juvenile cod. Our results suggest that: (1) an association with kelp provides safety from predation to juvenile cod, and (2) juvenile cod are capable for assessing the risk a predator represents and adjust their response accordingly.  相似文献   

18.
Studies have shown that pelagic predators do not overlap with their prey at small scales. However, we hypothesized that spinner dolphin foraging would be affected by the spatio-temporal dynamics of their prey at both small and large scales. A modified echosounder was used to simultaneously measure the abundance of dolphins and their prey as a function of space and time off three Hawaiian islands. Spinner dolphin abundance closely matched the abundance patterns in the boundary community both horizontally and vertically. As hypothesized, spinner dolphins followed the diel horizontal migration of their prey, rather than feeding offshore the entire night. Spinner dolphins also followed the vertical migrations of their prey and exploited the vertical areas within the boundary layer that had the highest prey density. Cooperative foraging by pairs of dolphins within large groups was evident. The geometric and density characteristics of prey patches containing dolphins indicate that dolphins may alter the characteristics of prey patches through this cooperative foraging. The overlap of Hawaiian spinner dolphins and their prey at many temporal and spatial scales, ranging from several minutes to an entire night and 20 m to several kilometers, indicates that the availability of truly synoptic data may fundamentally alter our conclusions about pelagic predator-prey interactions.  相似文献   

19.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

20.
The non-random movement patterns of foraging bees are believed to increase their search efficiency. These patterns may be innate, or they may be learned through the bees’ early foraging experience. To identify the innate components of foraging rules, we characterized the flight of naive bumblebees, foraging on a non-patchy “field” of randomly scattered artificial flowers with three color displays. The flowers were randomly mixed and all three flower types offered equal nectar volumes. Visited flowers were refilled with probability 0.5. Flight distances, flight durations and nectar probing durations were determined and related to the bees’ recent experiences. The naive bees exhibited area-restricted search behavior, i.e., flew shorter distances following visits to rewarding flowers than after visits to empty flowers. Additionally, flight distances during flower-type transitions were longer than flight distances between flowers of the same type. The two movement rules operated together: flight distances were longest for flights between flower types following non-rewarding visits, shortest for within-type flights following rewarding visits. An increase in flight displacement during flower-type shifts was also observed in a second experiment, in which all three types were always rewarding. In this experiment, flower-type shifts were also accompanied by an increase in flight duration. Possible relationships between flight distances, flight durations and flower-type choice are discussed. Received: 20 November 1995/Accepted after revision: 10 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号