共查询到20条相似文献,搜索用时 0 毫秒
1.
B. H. Pedersen 《Marine Biology》1993,117(4):547-550
Following yolk resorption, laboratory-reared larval Baltic herring (Clupea harengus L.) were exposed to two sequences of food restriction for 5 d and re-alimentation for 10 d. Comparisons regarding larval growth (standard length and content of water-soluble protein), mortality and content of the sum of trypsin and trypsinogen were made with larvae at a continuous high ration. Larvae exposed to varying prey abundance grew less in length than the control, and during the second high-ration period (Day 22 to 32) growth in length ceased. From the first low-ration period onwards, the content of water-soluble protein in these larvae was lower than that of the control larvae, and the survival rate of the low-high ration group was 59% compared to 77% in the larvae at a continuous high ration. In contrast, the effects of varying food availability were minor on larval content of trypsin and trypsinogen. Results are compared with previous findings in larval Clyde herring, and the effects of larval stock and timing and duration of food restriction on larval growth performance are discussed. 相似文献
2.
In order to assess possible effects of a transitory, low food supply on later development, three groups of Clyde herring larvae (Clupea harengus L.) were exposed in 1989 to different feeding regimes immediately after yolk resorption. Group 1 received a high daily ration of 80 copepods larvae–1 for 31 d, Group 2 a low daily ration of 15 copepods larva–1 for 10 d followed by a high ration (80 copepods larva–1) for 21 d and Group 3 a low ration of 15 to 20 copepods larva–1 for 31 d. After 31 d of feeding, digestive capacity, expressed as the sum of trypsin and trypsinogen, was markedly reduced in Group 2 compared to Group 1, while Group 3 had an even lower digestive capacity. After the switch from low to high ration Group 2 exhibited compensatory growth and caught up with Group 1 both in standard length and content of soluble protein. Group 3 had the lowest growth rates. Mortality was equal in Groups 1 and 2, while Group 3 showed an excess mortality of 40% of the start population. Although Group 2 larvae had caught up with Group 1 in growth at the end of the study, content of trypsin and trypsinogen in Group 2 was only half of that found in Group 1. Thus, comparing effects of a short period of food limitation on future growth, mortality and content of digestive enzymes, the study indicates content of trypsin and trypsinogen to be the most sensitive variable for detection of food limitation in the early stages of exogenous feeding. 相似文献
3.
Trypsin and its proform trypsinogen were quantified by radioimmunoassay in herring (Clupea harengus L.) larvae subjected to different prey densities. During the first weeks of larval life, the enzyme content fluctuated in a threephased pattern. Yolk resorption (Phase 1) was characterized by an increase in enzyme. During the first few days after yolk resorption (Phase 2), there was a sharp decline in enzyme. Older larvae (Phase 3) exhibited a second period of intensive enzyme synthesis. Amounts of trypsin in intestines of feeding larvae were analysed. At first feeding, a basal level of gut enzyme of approximately 30ng was recorded, and the amount of additional enzyme secreted from the pancreatic tissue into the intestine appeared to be dependent upon the numbers of prey items ingested. The enzyme-substrate ratio in the intestine was approximately 1 to 4. Prey availability affected amount of trypsinogen. Larvae experiencing a high prey density had an approximately two-fold higher specific enzyme content in Phase 2 compared to larvae exposed to a low prey density. A proposed nutritional strategy for first feeding herring larvae is discussed. 相似文献
4.
Herring (Clupea harengus L.) larvae from spring and autumn spawning stocks were reared at different constant temperatures from 5° to 17 °C. At equivalent developmental stages, the spring larvae were longer than the autumn larvae and the larvae reared at low temperatures were longer than those reared at high temperatures. At hatching and at the end of the yolk-sac stage, the larvae were induced, by a probe, to make C-start escape responses, which were recorded and analysed using a high-speed video recording at 400 frames s-1. The response was rapid and of short duration. The tailbeat frequency and swimming speed were measured during the burst of swimming following the C-start at different test temperatures and in larvae with different temperature histories. The tail-beat frequency was strongly temperature-dependent, rising from 19 Hz at 5 °C to 37 Hz at 17 °C with no effect of temperature history, season or developmental stage. The burst-swimming speed ranged at hatching from 75 to 90 mm s-1 at 5 °C to 110 to 160 mm s-1 at 17 °C and at yolk resorption from 90–115 mm s-1 at 5 °C to 175–190 mm s-1 at 17 °C. The longer, spring-spawned larvae swam faster than the shorter autumn-spawned larvae. When the swimming speeds were expressed as body lengths (L) s-1, these differences disappeared. Larvae swam from 7–9 L s-1 at 5 °C to 15–20 L s-1 at 17 °C at hatching, and from 8–9 L s-1 at 5 °C to 15–17 L s-1 at 17 °C at yolk resorption. There was, however, a significantly faster specific swimming speed by the larvae reared at 12 °C in spring 1991.Honorary Research Fellow of the Scottish Association for Marine ScienceUnfortunately, Karen Fretwell was drowned in an accident on 9 January 1993 相似文献
5.
Little is known about the changes in composition of brain lipids and fatty acids at different stages of development in fish. Wild Atlantic herring (Clupea harengus L.) were collected from Loch Linnhe and the Firth of Clyde, Scotland, from August 1990 to March 1991. Lipid class and fatty acid compositions of brain lipids were studied at four different stages of development: larvae at the end of the yolk sac stage, two juvenile stages and sexually mature adults. The total lipid content in brains increased during development, and larval brains contained higher proportions of neutral lipids and lower proportions of polar lipids than the brains of juvenile or adult herring. Increased proportions of polar lipids in juvenile and adult herring brains were mainly due to increased percentages of phosphatidylcholine (PC), phosphatidylethanolamine (PE), cerebrosides and sulphatides. The increase in the proportions of the glycolipid classes suggested increasing levels of myelination with development. In total lipids, saturated fatty acids generally decreased and monounsaturated fatty acids and dimethyl acetals (derived from PE-plasmalogen) increased from larvae to adults. However, the proportions of polyunsaturated fatty acids in individual phosphoglycerides were generally highest in juvenile stages, due mainly to increased 22:6n-3, and were lowest in adult fish. Relatively high percentages of 24:1 isomers were found in all the phosphoglycerides, but primarily PC, and these increased during development from larvae to adult. Fatty acids were distributed between individual phosphoglycerides with a characteristic pattern that did not change with development, although the relative amounts of individual fatty acids were altered. The variations and roles of the different lipid components of herring brain are discussed with respect to lipid compositions and functions in brains of other fishes and vertebrates. 相似文献
6.
To investigate the life-history adaptations of a brackish-water population ofNaineris laevigata Grube, a population from Acquatina lagoon near Lecce (Italy) was studied. Benthos and plankton samples were collected monthly over a period of ca. 2 yr (1989–1990). Observations of gametogenesis indicate that oogenesis is intraovaric, probably with autosynthetic yolk formation. Oogenesis takes about 7 mo, from November to April–May, for both proliferative and vitellogenetic phases. Reproduction is synchronized within the population. Spawning has also been obtained under laboratory conditions where larval development and post-larval growth were studied. Eggs measured 240 µm in diameter and were spawned within a gelatinous mass. The lecithotrophic pelagic stage was very short. Reproductive effort was high, probably because of high food availability and low level of competition. One of the most interesting findings was the probable presence of a resting stage in the life-cycle. The adaptive significance of enclosing the eggs in gelatiuous masses and of reducing the duration of the pelagic stage is discussed. 相似文献
7.
We estimated the broad-sense heritability of larval size in 20 full-sib families of the giant scallop, Placopecten magellanicus (Gmelin, 1791) grown in laboratory culture in August and September 1991. The goal was to compare scallops with other bivalves which have been shown to have significant heritabilities for larval growth. Secondly, we estimated the lipid content of occytes from female parents, since this is hypothesized to affect larval growth and survival. Finally, we estimated the among-family variation in mortality from 4 to 21 d as a test of possible genetic variation for viability among larval scallops. Significant genetic variation (h2=1.10 to 1.24) was estimated for larval shell length at 4, 14, and 21 d. There was a significant correlation (r=0.66) between larval size at 4 d and lipid content of oocytes, but only when two females with high levels of lipid oocyte–1 were excluded as outliers. There was no correlation between larval size at 14 and 21 d and lipid content of oocytes. Mortality among families from 4 to 21 d was high (69 to 97%), and was significantly different among families. These results indicate that there is significant heritability for larval growth which is largely independent of the lipid content of the oocytes. A high heritability for larval growth may indicate that this trait is only weakly correlated with fitness. 相似文献
8.
We investigated recruitment of the herbivorous gastropodLacuna vincta (Montagu, 1803) in the canopies ofMacrocystis integrifolia andNereocystis luetkeana beds in Barkley Sound, Vancouver Island (British Colombia), from 1987 to 1989. Four factors influencing intensity and patterns of recruitment were studied: (1) seasonality of oviposition, (2) larval abundance, (3) growth of larvae in the field and (4) larval settlement. Egg masses were abundant on low intertidal algae but were scarce in kelp canopies. Although egg masses could be found almost year-round, a distinct and intense period of oviposition occurred during winter and spring. Intracapsular development lasted 2.5 to 3.5 wk before planktotrophic veligers emerged. The duration of the planktonic period, 7 to 9 wk, was determined through an in situ study of cohorts ofLacuna spp. larvae present in the plankton between January and June 1988. The general timing of the onset of the spring peak recruitment period was predicted from these cohorts. Primary periods of recruitment ofL. vincta in the canopy occurred in April–May (average density up to 383.9 juveniles m–2 blades), with a second period of lower intensity in the late summer—fall period. We observed similar trends between abundance of advanced larvae (> 500µm) in the plankton and recruitment rates in kelp canopies. Although adults were occasionally observed in the canopy, newly metamorphosed juveniles consistently dominated the habitat. The persistance of small juveniles (0.7 to 1.5 mm), rapid declines in density shortly after recruitment, and SCUBA observations of drifting individuals suggest that juveniles migrate to the under-canopy or low intertidal area after a brief period of growth on kelp blades. 相似文献
9.
Autumn-spawned North Sea herring larvae (Clupea harengus L.) were released in two outdoor mesocosms of 2500 m3 (A) and 4000 m3 (B). The mesocosms were monitored for temperature, salinity, oxygen, chlorophyll a, zooplankton and herring larvae abundance. The density of suitable prey for first feeding larvae (mainly copepod nauplii) was initially low in Mesocosm A (<0.11-1) compared to in Mesocosm B (>11-1). Half-way through the experiment the situation was reversed, with higher densities of prey in Mesocosm A (>31-1) as compared to Mesocosm B (~11-1). The average temperature declined steadily in both mesocosms from 18°C at release to 11–12°C by the end of the experiment 60 d later. The RNA:DNA values of individual herring larvae were related to protein growth rates and temperature adjusted according to Buckley (1984). A corresponding DNA growth index (Gdi) was given as: Gdi=0.68 TEMP+3.05 RNA:DNA-9.92. The RNA:DNA based growth indices were significantly correlated with other somatic growth estimates. The average estimated protein growth rate in the two mesocosms followed the same temporal pattern as the somatic growth rate, but with a lag of 2 d or more. Residual analysis of the regression of ln RNA versus ln DNA also showed the same temporal pattern as the RNA:DNA ratios, but the shift in condition as estimated by this method occurred more in synchrony with the other somatic growth measures. Larvae in Mesocosm A had RNA:DNA values similar to the starvation control kept in the laboratory the first days after release, confirming that larvae in Mesocosm A initially were in poor nutritional condition. On the other hand, the majority of the herring from Mesocosm B were characterised as starving or in poor nutritional condition towards the end of the experiment. The assessment of growth and nutritional condition were in accordance with independent survival estimates which suggested that the majority of the total mortality occurred during the first 15 d in Mesocosm A and there-after in Mesocosm B. 相似文献
10.
A. J. Geffen 《Marine Biology》1982,71(3):317-326
Larvae of Clyde spring-spawning Clupea harengus L. and hatchery-produced Scophthalmus maximus (L.) were reared from hatching through metamorphosis in 1980 and 1981 in laboratory tanks and in large enclosures under various light, temperature, and feeding regimes in order to study otolith ring deposition and growth under different conditions. Ring deposition and growth rates were significantly affected by rearing conditions in both species. The ring deposition rates observed under the conditions tested ranged from 0.34 to 0.92 rings d-1 in herring larvae, and from 0.07 to 1.0 rings d-1 in turbot larvae. Growth rates ranged from 0.11 to 0.42 mm d-1 in herring and from 0.05 to 0.27 mm d-1 in turbot. The number of otolith rings was dependent on the growth rate of the individual larva. At the population level, higher ring deposition rates were observed in faster growing populations. In herring larvae, the relationship between average growth rate and average ring deposition rate was logarthmic, reaching an asymptote at 1 ring d-1 for growth rates approaching 0.40 mm d-1. The relationship was linear for turbot larvae for the range of growth rates observed. 相似文献
11.
Oddmund Kleven A. Moksnes Eivin Røskaft Marcel Honza 《Behavioral ecology and sociobiology》1999,47(1-2):41-46
The cuckoo (Cuculus canorus) is an obligate interspecific brood parasite. When about to lay an egg, the female must decide which nest to parasitise. A high-quality host species should be preferred, to enhance the possibility of producing a viable offspring. In this study, we investigated the effects of two closely related host species, the great reed warbler (Acrocephalus arundinaceus) and the reed warbler (A. scirpaceus) on the growth rate of cuckoo nestlings. We found that cuckoo nestlings raised by the larger host species, the great reed warbler, grew significantly faster and became statistically significantly larger at fledging than nestlings raised by the smaller host, the reed warbler. Our results indicate a qualitative difference between the two host species. The great reed warbler, considered to be the best host, was parasitised at a higher rate than the reed warbler. Received: 2 February 1999 / Received in revised form: 3 September 1999 / Accepted: 18 September 1999 相似文献
12.
Juveniles of the planehead filefish Stephano-lepishispidus (Pisces: Monacanthidae) (Linnaeus, 1766) are a major component of the Sargassum spp. community, yet little is known of their ecology. In this study, the otolith record of age, growth, and ontogeny in S.
hispidus was examined. Juveniles caught off Beaufort Inlet, North Carolina (USA) on 30 June 1996 were marked with alizarin complexone
and reared in a flow-through, outdoor tank for up to 19 days. Examination of marked otoliths at several time intervals showed
that increment formation was not significantly different than one increment per day, and thus, increment number was used to
estimate age. Depth-distribution, morphology, and meristics of larvae and juveniles collected (1990–1992) between Cape Romain,
South Carolina, and Cape Hatteras, North Carolina, were examined to identify the timing of the larval to juvenile transition.
All indicators suggested the transition occurred between 17 and 20 days. Mean otolith increment widths exhibited a marked
change at about 20 days, coinciding with the timing of the larval to juvenile transition and a change in the depth distribution
from bottom to surface waters. Increment width of individual juveniles, however, did not exhibit the same pattern; only 40%
conformed to the pattern identified for all fish. Thus, the record of the larval to juvenile transition is clear at the population
level, but unresolved at the individual level.
Received: 1 November 1999 / Accepted: 18 December 2000 相似文献
13.
Autumn-spawned North Sea herring larvae (Clupea harengus L.) were released in two outdoor mesocosms of 2500 m3 (A) and 4000 m3 (B). The mesocosms were monitored for temperature, salinity, oxygen, chlorophyll a, zooplankton and herring larvae abundance. The density of suitable prey for first feeding larvae (mainly copepod nauplii) was initially low in Mesocosm A (<0.11-1) compared to in Mesocosm B (>11-1). Half-way through the experiment the situation was reversed, with higher densities of prey in Mesocosm A (>31-1) as compared to Mesocosm B (11-1). The average temperature declined steadily in both mesocosms from 18°C at release to 11–12°C by the end of the experiment 60 d later. The RNA:DNA values of individual herring larvae were related to protein growth rates and temperature adjusted according to Buckley (1984). A corresponding DNA growth index (Gdi) was given as: Gdi=0.68 TEMP+3.05 RNA:DNA-9.92. The RNA:DNA based growth indices were significantly correlated with other somatic growth estimates. The average estimated protein growth rate in the two mesocosms followed the same temporal pattern as the somatic growth rate, but with a lag of 2 d or more. Residual analysis of the regression of ln RNA versus ln DNA also showed the same temporal pattern as the RNA:DNA ratios, but the shift in condition as estimated by this method occurred more in synchrony with the other somatic growth measures. Larvae in Mesocosm A had RNA:DNA values similar to the starvation control kept in the laboratory the first days after release, confirming that larvae in Mesocosm A initially were in poor nutritional condition. On the other hand, the majority of the herring from Mesocosm B were characterised as starving or in poor nutritional condition towards the end of the experiment. The assessment of growth and nutritional condition were in accordance with independent survival estimates which suggested that the majority of the total mortality occurred during the first 15 d in Mesocosm A and there-after in Mesocosm B. 相似文献
14.
Predation by the medusa Aurelia aurita L. on early first-feeding stage larvae of the herring clupea harengus L. was studied in the laboratory. The medusae were captured in Loch Etive, Scotland. Herring larvae were reared from the extificially fertilized eggs of spawning Clyde herring caught in March, 1982. Swimming speeds, volume searched”, capture efficiency and predation rates increased as medusa size increased. Predation rates on fish larvae increased with prey density, but appeared to approach a maximum at high prey densities; in 1 h experiments, a maximum rate of predation of 6.64 larvae h-1 was estimated by fitting an Ivlev function. A model to predict predation rates was constructed from swimming speeds, sizes and densities of medusae and larvae, and capture efficiency. The rates of predation predicted from the model fell within the range of experimental data, but tended to underestimate rates and did not account for saturation of medusae. Swimming patterns of medusae changed after prey capture: (a) before capture, encounter rates were low and medusae were relatively less active; (b) after capture of 1 larva, encounter rates doubled, with the stimulated medusae exhibiting increased activity and an aftered “searching” path; and (c) after capture of many larvae, swimming speeds and encounter rates of medusae decreased. 相似文献
15.
G. M. Gouchie L. F. Roberts R. J. Wassersug 《Behavioral ecology and sociobiology》2008,62(11):1821-1829
We examined the behavioral and developmental responses of Xenopus laevis larvae to their mirror images in three experiments. The mirrors allowed us to visually simulate increased density, without the tadpoles’ behavior being confounded by chemical cues from additional tadpoles. In the first experiment, we demonstrated that Xenopus tadpoles have a right eye preference for mirrors, contrary to the left eye preference of all other anuran species studied to date. This lateralized eye use disappeared, however, as tadpoles approached metamorphosis. Next, we examined how mirrored aquaria walls affected tadpole growth and development. We found that tadpoles raised in aquaria with partially mirrored walls showed depressed growth compared to tadpoles raised without mirrors, despite the fact that Xenopus larvae normally thrive when raised in visual contact with conspecifics. The tadpoles raised with mirrors had, though not significantly, proportionally larger bodies relative to their tail length (d = 0.51). This suggests that a phenotypically plastic response in body proportions was induced in these tadpoles solely by the sight of other tadpoles. The third experiment established that X. laevis tadpoles are more active in front of a mirror; i.e., they turn more often and spend more time in front of mirrored surfaces. We consider this increased activity to be an aberrant behavior of the tadpoles, which were attempting to school with their own images. We suggest that this extra activity reduced the amount of energy available for growth, accounting for the depressed growth seen in our second experiment. 相似文献
16.
A field study was conducted at Wanlitung, southern Taiwan, in 1986–1089, to determine the reproductive cycle, development mode, growth rate and population dynamics of the small seastar Patiriella pseudoexigua (Dartnall), which occurs in highly stressful and disturbed intertidal pools in this area. An inverse relationship between gonad index and pyloric-caccum index was only recorded immediately prior to spawning. A short, well-synchronized seasonal spawning occurs in October. When reared at 25 °C, lecithotrophic larvae develop directly, lack a bipinnaria stage, and metamorphose completely on the seventh day after fertilization. The growth curves of field juveniles are linear, those of laboratory-reared juveniles are sigmoid. Juveniles appear in tide pools in spring-early summer of each year. Adults spawn mainly in late fall, enabling spawning to occur in time for the larvae to benefit from the environmentally favorable winter season. Populations in high-tidal pools decrease in later summer, but remain more stable in lowtidal pools and lagoons. 相似文献
17.
Larval turbot (Scophthalmus maximus) were reared in a large marine enclosure and in plastic bags in southern Norway. Samples of larvae in the enclosure were taken during the first 12 d of life to estimate individual body growth based on back calculations from daily growth rings on their otoliths. Size selective mortality was documented for these larvae in the predator-free enclosure. Starvation in the laboratory occurred on the seventh day. In the enclosure, a mortality rate of 18.1% d-1 prevailed. Our data indicates that the survivors beyond the starvation period are larger by 0.18 mm on average. This result is important with regard to the question of whether starvation is an important mechanism for larval mortality in the sea. A possible means of estimating the relative effects of starvation versus predation based on these results and the backcalculation technique is suggested. 相似文献
18.
Mechanisms initiating trypsinogen secretion were studied in laboratory reared herring larvae (Clupea harengus L.) exposed to physical and chemical stimuli. Pancreatic secretion of trypsinogen was quantified for each stimulus type as the increase above pre-stimulus level of intestinal trypsin content. Larval prey types were: nauplii, copepodites or adult Acartia tonsa, small polystyrene spheres (diameter 94 m), small (diameter 79 m) or large (diameter 170 m) polystyrene-latex spheres. Intestinal trypsin content can be expressed as a function of two variables: meal size and content of pancreatic trypsinogen. Trypsinogen secretion increases with different prey items in the order: small spheres, nauplii and copepodites. Larvae which eat large spheres secrete more enzyme than if fed small spheres but trypsinogen secretion is similar in fish larvae fed copepodites and large spheres. The fact that the size of non-biodegradable particles exerts a major control over trypsinogen secretion suggests neural — as opposed to chemically mediated — initiation of secretion. A cephalic phase of secretory stimulation could not be demonstrated during swallowing of copepods or exposure for 2 to 3 h to compounds which leak from live copepodites. As cephalic and gastric phases of secretory stimulation are absent, initiation of trypsinogen secretion must take place in the intestine. Larval herring retain trypsin in the intestine. Ca. 4.5 h after a meal, 3/4 of the enzyme is located in the intestinal fluid, presumably available for hydrolysis of subsequent meals, and the high proportion (ca. 25%) of the pancreatic trypsinogen content which is secreted for copepodite prey may thus not be energetically wasteful for the larvae. 相似文献
19.
Most studies on feeding by herring larvae (Clupea harengus) have taken place in clear, open waters, but several herring stocks around the world spawn in inshore and estuarine regions. An example is the spring-spawning Blackwater Estuary (Essex, England) stock. Samples were collected in this estuary to examine prey selectivity and feeding levels in relation to biological and environmental conditions. Herring larvae negatively selected copepod nauplii, but positively selected the copepodite and adult stages of Acartia spp. Gastropod larvae were also positively selected. Particles >150 μm width were preferred, whilst particles smaller than this value were preferentially rejected. Concentrations of potential prey items in the water were in the range of 6.0 to 49.7 organisms l−1 with a median concentration of 15.0 organisms l−1 (n = 26). These values are towards the low end of prey concentrations quoted in the literature as being required to sustain herring larval growth and survival. However, theoretical considerations suggest that, in this environment, levels of tidally-induced turbulence enhance encounter rates between larval herring and their prey. On the other hand, turbidity is also related to tidal current speed and might reduce feeding success by decreasing underwater light levels. Measurements at two sites in the estuary confirmed that tidally-induced turbidity reduced the effective water depth in which herring larvae could visually feed by up to 50% at times of peak current speed. However, with the gut-content data available in the present study, it was not possible to discern any clear relationships between feeding success and the state of the tide. Feeding success appeared to be more strongly influenced by surface light-levels. Received: 24 June 1998 / Accepted: 17 February 1999 相似文献
20.
Larval growth rate and settlement of the European flat oyster Ostrea edulis were experimentally studied as a function of the composition of dietary fatty acids. Diets differing in fatty acid composition were composed by mixtures of the microalgae Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans. Fatty acid content in the tissue of the feeding larvae, analyzed by gas chromatography and mass spectrometry, reflected the composition in the diet. Larval growth rate was significantly correlated to the three omega-3 polyunsaturated fatty acids (PUFA) C18:3, C18:4 and C22:6, with minor differences for neutral and polar lipids. No relation between growth rate and the omega-3 PUFA C20:5 was detected, a PUFA often implied as essential for bivalves. It is suggested that naturally occurring variability in fatty acid composition may constrain larval growth. In settlement experiments in both still water and flume flow little substrate selectivity was found for some contrasting substrates. It is concluded that differences in dietary fatty acids may explain as much of settlement success as the variability of substrates. Received: 12 October 1998 / Accepted: 6 April 1999 相似文献