首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maternally derived androgen hormones concentrate in avian egg yolks as the yolks grow on the female’s ovary, possibly forming a basis for important maternal effects in birds. In the American kestrel (Falco sparverius), experimental elevation of yolk androgens in the first-laid egg of a clutch (a-egg) to the concentrations found naturally in a clutch’s later-laid eggs reduces the growth rate of a-egg nestlings compared to controls. These findings, together with discoveries from other species that the effects of yolk androgens on growth of female nestlings may differ from their effects on growth of male nestlings, raise the hypothesis that natural changes in yolk-androgen concentrations with laying order are ultimately due to a difference between the sexes in their yolk-androgen sensitivity and between early- and late-laid eggs in their sex ratio. By re-analyzing previously published data and adding to the analysis data from previously unanalyzed blood samples used for sex determination, we investigated possible sex-specific effects of yolk-androgens in the context of a potential sex-biased laying order in free-living American kestrels. We used a multi-level, mixed model with a Gompertz function to analyze growth of nestlings hatching from a-eggs that were control-treated or in which we experimentally elevated yolk-androgen concentrations shortly after laying to the higher concentrations naturally found in later-laid eggs. We discovered that male nestlings were more susceptible than female nestlings to growth inhibition by yolk-androgen elevation but did not find a bias in sex ratio with respect to laying order. Together, these findings do not support the above hypothesis. However, they are consistent with the hypothesis that sex differences in yolk-androgen sensitivity enable mothers to economically tune reproductive effort to an individual offspring’s reproductive value, which can vary more for one sex than the other.  相似文献   

3.
4.
Curves relating instantaneous growth rate to aerial exposure were determined for six species of bivalves in laboratory and shore experiments. A dimensionless index equatable with the relative intertidal growth performance of a species was calculated by integration of the growth curve after converting both growth rate and aerial exposure to decimal fractions. Intertidal growth performance of the bivalves tested corresponded well with their natural levels of occurrence on the shore, and improved in the following order: Modiolus modiolus < Argopecten irradians < Ostrea edulis < Mytilus edulis < Crassostrea virginica. Geukensia demissa, for which an index value could not be determined, grew faster intertidally than subtidally. The relative contributions made to intertidal growth performance by energy-conserving and energy-supplementing capacity adaptations were assessed by resolving the growth curves into energy-input and energy-loss components. The rate of energy loss due to intertidal exposure was lower in the high-shore species, and also less affected by harsher subaerial conditions, than in the low-shore species. Moreover, M. edulis and C. virginica showed abilities to supplement energy input such that growth per unit immersion time was better at certain intertidal levels than subtidally. Energy conservation and supplementation in these forms made roughly equal contributions to their improved intertidal growth relative to species occurring lower on the shore.  相似文献   

5.
E. C. Bell 《Marine Biology》1993,117(2):337-346
When exposed to air during low tide, intertidal macroalgae experience a terrestrial environment and often encounter extreme levels of heating and desiccation. Two aspects of photosynthesis may be influenced by this increase in temperature and decrease in water content during exposure to air: (1) the rate of aerial photosynthesis itself, and (2) the rate at which aquatic photosynthesis recovers upon immersion in water at high tide. This laboratory study examines the effect of air temperature and desiccation on photosynthesis of the intertidal macroalga Mastocarpus papillatus Kützing. Plants were collected at Hopkins Marine Station, California, USA (36°37N; 121°54W) between July and December 1990. When apical tips were exposed to 15 to 25°C air for 2 h, photosynthesis was rapidly recovered upon reimmersion in seawater. Recovery was delayed, but complete, when tissue was exposed to 30°C air, but did not occur after exposure to 35°C air. Desiccation did not influence either the rate or the ultimate level of recovery upon reimmersion. Photosynthesis in air generally decreased with increasing desication, with no net photosynthesis occurring below 25% relative water content. Net photosynthesis of hydrated thalli increased with air temperature from 15 to 30°C, then decreased at 35°C. Dark respiration of hydrated thalli increased over the entire temperature range. This study indicates that thallus heating and desiccation during periods of exposure to air can potentially influence the total carbon budget of M. papillatus.  相似文献   

6.
Ant foraging behavior: ambient temperature influences prey selection   总被引:2,自引:0,他引:2  
Summary When prey of two sizes (6 and 32 mg) were offered in a choice situation to foragers of the ant Formica schaufussi at different ambient temperatures, significantly more workers rejected the smaller prey at low temperatures, whereas at high temperatures workers accepted the less profitable smaller item. Foragers scavenge for arthropod prey over a temperature range of 15–40°C, and increasing temperature significantly increases a forager's oxygen consumption, an index of energy expenditure.  相似文献   

7.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

8.
The seasonal selection by temperature of bacteria in an intertidal sediment was investigated, and a simplified method of demonstrating the temperature adaption of a mixed heterotrophic bacterial population was suggested. The method relied upon counting the bacteria which grew at only two separate incubation-temperatures, and compared favourably with more tedions methods which utilise replicated cultures grown at a large number of incubation temperatures. Using this technique, a temperature adaptation index was calculated for the heterotrophic bacterial population and changes in the value of this index were shown to be correlated with seasonal changes of environmental temperature.  相似文献   

9.
Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.  相似文献   

10.
The aggregate income of oil-exporting countries relative to that of oil-poor countries has been remarkably constant in recent decades, despite the existence of structural gaps in productivity growth rates. This stylized fact is rationalized in an endogenous growth model of asymmetric trade where resource-poor and resource-rich economies display productivity differences but stable income shares due to terms-of-trade dynamics. The model yields two testable predictions that deserve empirical scrutiny: (i) the asymmetric impact, between exporters and importers, of national taxes on resource use on income shares and (ii) the inverse relation between terms-of-trade dynamics and total factor productivity growth.  相似文献   

11.
The aggregate income of oil-exporting countries relative to that of oil-poor countries has been remarkably constant in recent decades, despite the existence of structural gaps in productivity growth rates. This stylized fact is rationalized in an endogenous growth model of asymmetric trade where resource-poor and resource-rich economies display productivity differences but stable income shares due to terms-of-trade dynamics. The model yields two testable predictions that deserve empirical scrutiny: (i) the asymmetric impact, between exporters and importers, of national taxes on resource use on income shares and (ii) the inverse relation between terms-of-trade dynamics and total factor productivity growth.  相似文献   

12.
Summary The foraging decisions of animals often reflect a trade-off between the risk of predation and efficient foraging. One way an animal may reduce the risk of predation, and hence exploit a resource patch in relative safety, is by foraging in a group. Solitary pioneer sparrows often recruit others to a food source by making chirrup calls in order to establish foraging flocks. This study describes the decisions of house sparrows that arrive at food resources of different risks of predation. Four feeding sites at different distances from a perching site and from an observer were presented to sparrows. When the feeder was adjacent to the perching site and far from the observer, the pioneers chirruped less frequently and were more likely to forage alone than when the feeder was in the other three positions. There were differences in the scanning behaviour of sparrows at these sites, suggesting that they were responding to different risks of predation. Furthermore, the chirrup rates of pioneer sparrows in this study and a previous study were found to be negatively correlated with maximum daily temperature. This is consistent with the hypothesis that energy requirements may affect the flock establishment decisions of sparrows, and that the benefits of foraging in flocks may be greater at lower temperatures.  相似文献   

13.
Summary A model of colony growth and foraging in the honey bee (Apis mellifera L.) is presented. It is assumed that summer workers choose a foraging strategy that maximizes colony population by the end of the season subject to the constraint that enough nectar has been stored to sustain the adult population overwinter. The optimal foraging strategy is derived with respect to the number of flowers visited during one foraging trip. A forager that visits many flowers collects a substantial amount of nectar but the probability that the worker returns alive from the excursion decreases accordingly. Using dynamic modelling, I explore the effects on colony growth of colony population, colony energy requirements and mortality rate while foraging. The model shows that when the expected rate of increase in nectar reserves is low, for instance in small colonies or when mortality rate rises rapidly with foraging intensity, workers collect more nectar during each foraging trip. The increase in foraging activity is realized at the expense of colony growth. The main finding is that depending on colony status the foraging strategy that maximizes worker population implies visits to almost any number of flowers. This is in sharp contrast to predictions from traditional foraging models where foraging intensity is assumed to cluster around values that maximize net rate or efficiency. The model suggests that strategies that cluster around rate and efficiency maximization should be viewed as particular solutions to a more general problem.  相似文献   

14.
《Ecological modelling》2007,200(1-2):189-192
We suggests that temperature response of plant productivity can be modeled by the Arrhenius function modified to describe the effect of temperature on enzyme activity: GA(T) = 2f(T)/(1 + f2(T)), where f(T) = exp(Ea/RTopt  Ea/RT), R the universal gas constant, Ea the activation energy and Topt is the optimal temperature. In common with other functions used for modeling the temperature response of plant productivity, the curve of function G is almost symmetrical and bell-shaped. The special convenience of GA is that it relates the width of the “bell” to thermodynamic concepts, such as activation energy of chemical reactions converting carbon dioxide and water to carbohydrates.  相似文献   

15.
High-rocky-shore intertidal animals are predicted to be generally more vulnerable to climate warming than lower-shore species, because their thermal tolerances lie closer to maximum environmental temperatures (T e). However, this prediction is based on taxonomically and ecologically limited information. The present study investigated the effect of habitat use on climate warming vulnerability of the tropical high-shore snail, Echinolittorina malaccana (from Brunei Darussalam, 5°N), which aestivates in sun-exposed or shaded habitats. The thermal regimes of these habitats differed vastly, but snails showed similar daily energy consumption in either habitat, due to temperature-insensitive metabolism (TIM) between 35 and 46 °C in the sun-resting snails. However, maximum T e values in the shade and the sun were 35 and 46 °C, respectively, suggesting that sun-resting snails, which presently experience temperatures near the incipient lethal temperature range (46–56 °C), should be more threatened by further warming than shade-resting snails, which have an 11 °C ‘safety margin’. Thus, vulnerability of high-shore species to climate warming could be moderated by availability of shaded habitat, making predictions for these species more complex than previously realized.  相似文献   

16.
R. F. Dame 《Marine Biology》1972,17(3):243-250
Seasonal variations in the growth, respiration and assimilation of the intertidal oyster Crassostrea virginica (Gmelin) of different sizes were determined. The instantaneous growth rates for intertidal oysters decreased with increasing size and with lower temperatures. Q10 values computed from instantaneous growth rates were approximately 2 during the warm growing season, but were higher in the colder months. Oxygen consumption increased with temperature and body size. A model was developed to predict oxygen consumption at any environmental temperature from 10° to 30°C for oysters ranging in weight from 0.1 to 100.0 g. Q10 values computed from oxygen-consumption rates decreased with increasing temperature and increasing body size. Intertidal oysters utilize a large proportion of their assimilated energy in growth.Supported by a Belle W. Baruch Fellowship in Marine Ecology.  相似文献   

17.
Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community was greatly driven by temperature as seen by DNA fingerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial cultures changed in a temperature-dependent manner, its quality greatly varied under the same environmental conditions, but with different associated bacterial communities. Furthermore, temperature affected quantity and quality of cell-bound microcystins, whereby interactions between M. aeruginosa and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic’ methanogens contributed to the associated microbial community. This implies so far uncharacterized interactions between Microcystis aeruginosa and its associated prokaryotic community, which has unknown ecological consequences in a climatically changing world.  相似文献   

18.
Accurate measurements of surface temperatures with an infrared (IR) thermometer require input of the emissivities of the surfaces being measured; however, few determinations of the emissivities of intertidal organisms’ surfaces have been made. Emissivities of intertidal macroalgae were measured to determine whether algal species, measurement angle, hydration, and layering affected them. Emissivities were similar and averaged 0.94 among 11 of 13 species. The species with lower and more variable emissivities (Chondracanthus exasperatus and Desmarestia viridis) differed in morphology from the other species, which were relatively flat thin blades with little surface texture. Measurement angle caused emissivities to decrease significantly in Mazzaella splendens but not in three other species. Hydration and layering of Ulva lactuca also had no effect. At 22 °C, measured temperatures were within 1 °C of actual temperatures when thermometer emissivity settings ranged from 0.75 to 1.00. When emissivities were set lower than actual values, measured temperatures were lower than actual temperatures at 15 °C and higher than actual temperatures at 60 °C. When the IR thermometer was used to measure surface temperatures of nine species of intertidal algae immediately before they were inundated by the incoming tide, temperatures were higher in mid intertidal than low intertidal individuals and higher on a sunnier day than an overcast day. Temperatures of U. lactuca increased with increasing height on the shore, but temperatures of Ulvaria obscura did not. Temperatures were also higher in Fucus distichus blades than receptacles, and lower in U. lactuca and M. splendens occurring in the lower layers of stacks of algae.  相似文献   

19.
20.
Benthic gross primary production (GPP) and community respiration (BCR) were regularly measured on sandy beach sediment during low tide in a megatidal ecosystem. These measurements were assessed during 2 years in situ within a benthic chamber simultaneously with bacterial production (BP). Results suggested that community respiration in Wimereux sandy beach sediments was probably dominated by bacterial respiration and that the estimated benthic bacterial growth efficiency (BGE) was highly variable. Although temperature significantly controlled both BP and BCR during low tide at the annual scale, the temperature effect on BGE was not significant. The instability and sediment erosion caused by the wave action and the tidal cycle were thus thought to influence the BGE. Since the sampling site is regularly affected by Phaeocystis foam deposit (enhancing the BCR and decreasing the BGE), and since GPP rates were highly variable and supported by high assimilation numbers (i.e., >1 mgC mgChla −1 h−1), phytoplankton organic matter deposit following the immersion of the study site was thought to explain the BGE variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号