首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the relationship between the abundance of bacterial denitrifiers in groundwater at four sites, differing with respect to overlaying land management and peizometer depth. Groundwater was sourced from 36 multilevel piezometers, which were installed to target different groundwater zones: (1) subsoil, (2) subsoil to bedrock interface, and (3) bedrock. The gene copy concentrations (GCCs), as gene copies per liter, for bacterial 16S rRNA genes and the denitrifying functional genes, nirK, nirS, and nosZ, were determined using quantitative polymerase chain reaction assays. The results were related to gaseous nitrogen emissions and to the physicochemical properties of the four sites. Overall, nirK and nirS abundance appeared to show no significant correlation to N2O production (P?=?0.9989; P?=?0.3188); and no significant correlation was observed between nosZ and excess N2 concentrations (P?=?0.0793). In the majority of piezometers investigated, the variation of nirK and nirS gene copy concentrations was considered significant (P?<?0.0001). Dissolved organic carbon (DOC) decreased with aquifer depth and ranged from 1.0–4.0 mg l?1, 0.9–2.4 mg l?1, and 0.8–2.4 mg l?1 within piezometers located in the subsoil, subsoil/bedrock interface, and bedrock depths, respectively. The availability of increasing DOC and the depth of the water table were positively correlated with increasing nir and nosZ GCCs (P?=?0.0012). A significant temporal correlation was noted between nirS and piezometer depth (P?<?0.001). Interestingly, the nirK, nirS, and nosZ GCCs varied between piezometer depths within specific sites, while GCCs remained relatively constant from site to site, thus indicating no direct impact of agricultural land management strategies investigated on denitrifier abundance.  相似文献   

2.
This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p?<?0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy.  相似文献   

3.
In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50 % decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L–1 for 72 h and 9.4–28.5 μg L–1 for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L–1 after 72 h. Inhibition rates was significantly increased with decreased water temperature (P?<?0.01). Intracellular H2O2 levels as an indicator of oxidative stress were also decreased with increasing temperature in both control and diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P?<?0.01). Our results suggest water temperatures may affect the toxicokinetics of diuron in freshwater and should therefore be considered in environmental risk assessment.  相似文献   

4.
Genotoxicity of pressmud (PM) to Allium cepa was investigated to assess its toxic potential and to elucidate the effect of vermicomposting to reduce its toxicity. The PM produced as a waste by product of the sugar cane industry was mixed with cow dung (CD) at different ratios of 0:100 (V0), 25:75 (V25), 50:50 (V50), 75:25 (V75) and 100:0 (V100) (PM:CD) on a dry weight basis for vermicomposting with Eisenia fetida. Different concentrations of 100 % PM sludge extract (10 %, 20 %, 40 %, 60 %, 80 % and 100 %) and negative control (distilled water) and positive control (maleic hydrazide) were analyzed with A. cepa assay to evaluate frequency of chromosomal aberrations before and after vermicomposting. Percent aberration was greatest (30.8 %) after exposure to 100 % PM extract after 6 h but was reduced to 20.3 % after vermicomposting. Exposure to the extract induced c-mitosis, delayed anaphase, laggards, stickiness and vagrant aberrations. Microscopic examination of root meristem exposed to PM sludge extract showed significant inhibition of mitotic index. Also, the mitotic index decreased with increase in concentration of PM sludge extract. After vermicomposting the mitotic index was increased. However, increasing percentages of PM significantly affected the growth and fecundity of the worms and maximum population size was reached in the 25:75 (PM:CD) feed mixture. Nitrogen, phosphorus, sodium, electrical conductivity (EC) and pH increased from initial feed mixture to the final products (i.e., vermicompost), while organic carbon, C/N ratio and potassium declined in all products of vermicomposting. Scanning electron microscopy (SEM) was recorded to identify the changes in texture with numerous surface irregularities and high porosity that proves to be good vermicompost manure. It could be concluded that vermicomposting could be an important tool to reduce the toxicity of PM as evidenced by the results of genotoxicity.  相似文献   

5.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

6.
In Burkina Faso where cooking with biomass is very common, little information exists regarding kitchen characteristics and their impact on air pollutant levels. The measurement of air pollutants such as respirable particulate matter (PM10), an important component of biomass smoke that has been linked to adverse health outcomes, can also pose challenges in terms of cost and the type of equipment needed. Carbon monoxide could potentially be a more economical and simpler measure of air pollution. The focus of this study was to first assess the association of kitchen characteristics with measured PM10 and CO levels and second, the relationship of PM10 with CO concentrations, across these different kitchen characteristics in households in Nouna, Burkina Faso. Twenty-four-hour concentrations of PM10 (area) were measured with portable monitors and CO (area and personal) estimated using color dosimeter tubes. Data on kitchen characteristics were collected through surveys. Most households used both wood and charcoal burned in three-stone and charcoal stoves. Mean outdoor kitchen PM10 levels were relatively high (774 μg/m3, 95 % CI 329–1,218 μg/m3), but lower than indoor concentrations (Satterthwaite t value, ?6.14; p?<?0.0001). In multivariable analyses, outdoor kitchens were negatively associated with PM10 (OR?=?0.06, 95 % CI 0.02–0.16, p value <0.0001) and CO (OR?=?0.03, 95 % CI 0.01–0.11, p value <0.0001) concentrations. Strong area PM10 and area CO correlations were found with indoor kitchens (Spearman’s r?=?0.82, p?<?0.0001), indoor stove use (Spearman’s r?=?0.82, p?<?0.0001), and the presence of a smoker in the household (Spearman’s r?=?0.83, p?<?0.0001). Weak correlations between area PM10 and personal CO levels were observed with three-stone (Spearman’s r?=?0.23, p?=?0.008) and improved stoves (Spearman’s r?=?0.34, p?=?0.003). This indicates that the extensive use of biomass fuels and multiple stove types for cooking still produce relatively high levels of exposure, even outdoors, suggesting that both fuel subsidies and stove improvement programs are likely necessary to address this problem. These findings also indicate that area CO color dosimeter tubes could be a useful measure of area PM10 concentrations when levels are influenced by strong emission sources or when used in indoors. The weaker correlation observed between area PM10 and personal CO levels suggests that area exposures are not as useful as proxies for personal exposures, which can vary widely from those recorded by stationary monitors.  相似文献   

7.
The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L?1). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L?1 ZnO NPs significantly increased SOD and CAT activities (P?<?0.05) and significantly depressed photosynthetic pigments (P?<?0.05). However, plant growth was not significantly affected (P?>?0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L?1 can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.  相似文献   

8.
The influence of molybdenum oxide nanoparticles (MoO3) on the growth and survival of Eisenia fetida was established. The activity of antioxidant enzymes and changes in concentration of molybdenum in the body of E. fetida were determined. The degree of bacterial bioluminescence inhibition in extracts of substrates and worm was studied using luminescent strain Escherichia coli K12 TG1. The enzymatic activity of substrates before and after exposure with nanoparticles and worms was assessed. Nanoparticles have concentrations of 10, 40, and 500 mg/kg of dry matter, and substrata are made of artificial soil (substrate A) and microcrystalline cellulose (substrate B). Spherical nanoparticles MoO3, yellow in color, with size 92?±?0.3 nm, Z-potential 42?±?0.52 mV, molybdenum content 99.8 mass/%, and specific area 12 m2/g were used in the study. A significant decrease by 23.3 % in weight was registered (for MoO3 NPs at 500 mg/kg) on substrate A (p?≤?0.05). On substrate B, the maximum decrease in weight by 20.5, 33.3, and 16.9 % (p?≤?0.05) was registered at a dose of 10, 40, and 500 mg/kg, respectively; mortality was from 6.6 to 73 %. After the assessment of bacterial bioluminescence inhibition in substrates A and B (extracts) and before worms were put, the toxicity of substrates was established at doses of 40 and 500 mg/kg, expressed in inhibitory concentration (IC) 30 and IC 50 values. Comparatively, on days 7 and 14, after exposure in the presence of E. fetida, no inhibition of bioluminescence was registered in extracts of substrates A and B, indicating the reduction in toxicity of substrates. The initial content of molybdenum in E. fetida was 0.9?±?0.018 mg/kg of dry matter. The degree of molybdenum accumulation in worm tissue was dependent on the dose and substrate quality. In particular, 2–7 mg/kg of molybdenum accumulated from substrate A, while up to 15 kg/kg of molybdenum accumulated from substrate B (day 7). Molybdenum concentration decreased by 64.8 and 57.4 % at doses 40 and 500 mg/kg, respectively, on day 14. The reaction of antioxidant enzymes was shown in an insignificant increase of glutathione reductase (GSR) and catalase (CAT) at concentrations of 10 and 40 mg/kg in substrate A, followed by the subsequent reduction of their activity at the dose of 500 mg/kg MoO3. The activity of GSR in substrate B against the presence of MoO3 nanoparticles decreased, with significant difference of 33.5 % (p?≤?0.05) at the dose of 500 mg/kg compared with untreated soil. In experiments with substrate A, an increase of catalase activity was registered for the control sample. The presence of MoO3 nanoparticles at the concentration of 10 mg/kg in the environment promoted enzymatic activity on days 7 and 14, respectively. A further increase of nanoparticle concentration resulted in the decrease of catalase activity with a minimum value at the concentration of MoO3 of 500 mg/kg. In the experiment with substrate B at the concentration of MoO3 nanoparticles of 40 mg/kg, enzymatic activity increases on day 7 of exposure. However, the stimulating effect of nanoparticles stops by day 14 of the experiment and further catalase activity is dose dependent with the smallest value in the experiment with MoO3 having the concentration of 500 mg/kg.  相似文献   

9.
The present study aimed to evaluate the effect of arsenic on liver fatty acids (FA) composition, hepatotoxicity and oxidative status markers in rats. Male rats were randomly devised to six groups (n?=?10 per group) and exposed to sodium arsenate at a dose of 1 and 10 mg/l for 45 and 90 days. Arsenate exposure is associated with significant changes in the FA composition in liver. A significant increase of saturated fatty acids (SFA) in all treated groups (p?<?0.01) and trans unsaturated fatty acids (trans UFA) in rats exposed both for short term for 10 mg/l (p?<?0.05) and long term for 1 and 10 mg/l (p?<?0.001) was observed. However, the cis UFA were significantly decreased in these groups (p?<?0.05). A markedly increase of indicator in cell membrane viscosity expressed as SFA/UFA was reported in the treated groups (p?<?0.001). A significant increase in the level of malondialdehyde by 38.3 % after 90 days of exposure at 10 mg/l was observed. Compared to control rats, significant liver damage was observed at 10 mg/l of arsenate by increasing plasma marker enzymes after 90 days. It is through the histological investigations in hepatic tissues of exposed rats that these damage effects of arsenate were confirmed. The antioxidant perturbations were observed to be more important at groups treated by the high dose (p?<?0.05). An increase in the level of protein carbonyls was observed in all treated groups (p?<?0.05). The present study provides evidence for a direct effect of arsenite on FA composition disturbance causing an increase of SFA and TFAs isomers, liver dysfunction and oxidative stress. Therefore, arsenate can lead to hepatic damage and propensity towards liver cancer.  相似文献   

10.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

11.
Chronic exposure to chromium (Cr) and nickel (Ni) has long been recognized as being capable to increase head and neck cancer (HNC) incidence among exposed human populations. This study represents the first biomonitoring of Cr and Ni exposure in Tunisia and focuses on a possible association with HNC risk. The aim of the present study was to evaluate the concentrations of Cr and Ni in the blood of HNC patients and controls. Metals blood levels of 169 HNC patients and 351 controls were determined using a Perkin-Elmer Analyst 800 Atomic Absorption Spectrometer. Mean blood levels of Cr and Ni in HNC cases (52.15 and 111.60 μg/L, respectively) were significantly higher than those of controls (37.04 and 30.50 μg/L, respectively). Cases’ blood levels of Cr and Ni were significantly higher than those of controls after controlling for the other risk factors of HNC, including smoking, shisha consumption, occupational exposure, and nearby environment (P?<?0.05). Among these risk factors, smoking and occupational exposure presented the most significant association with HNC (odds ratio (OR)?=?6.54 and 7.66, respectively, P?<?0.001). Cr and Ni levels in blood sample of cases and controls that are smoker/occupationally exposed were higher than that of non-smoker/non-occupationally exposed (P?<?0.05). Smokers who are occupationally exposed present the most significant association with HNC (OR?=?25.08, P?<?0.0001). High levels of blood Cr (OR?=?2.09) and high levels of blood Ni (OR?=?8.87) were strongly associated with HNC after other potential confounders were controlled (P?=?0.004 and P?<?0.0001, respectively). This study suggested a potential role of Cr and Ni in the mechanism of HNC development.  相似文献   

12.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

13.
The aim of this study was to relate the results obtained by chemical methods, used to assess environmental (bio)availability, with the ecotoxic response and bioaccumulation of trace elements (TE) by the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils from a sulphide mine. The extracting solution 0.5 M NH4CH3COO, 0.5 M CH3COOH and 0.02 M EDTA (pH 4.7), was able to predict environmental bioavailability of TE to E. fetida. However, the toxicological bioavailability could not be predicted from the results of the chemical extractions or from the bioaccumulation results: E. fetida reproduction was higher in soils where environmental bioavailability of TE and bioaccumulation values were also higher. In this study, the toxic response of the organism seemed to be more influenced by the overall nutritional status of the soil (e.g. pH, organic matter, plant nutrient availability and cation exchange capacity) than by its TE contamination. In the case of anthropogenic multi-contaminated sites, the different soil characteristics exert an important and confounding influence in the toxic response and the relationship between different bioavailable fractions cannot be easily established, emphasising the need to combine results from chemical methods with those from bioassays when evaluating the bioavailability of TE in these soils.  相似文献   

14.
The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K2HPO4, MgSO4.7H2O, NH4Cl, CaCl2·2H2O, FeCl3 (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD5, COD, and TOC of treated wastewater from algal batch reactor were 20?±?7, 167?±?29, and 78?±?16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD5,COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day?1) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO–Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.  相似文献   

15.
The full-length cDNA of catalase (EfCAT) from Eisenia fetida was cloned (GenBank accession no. JN617999). Sequence characterization revealed that EfCAT protein sequence contained proximal heme-ligand signature sequence (351RLFSYSDTH359), two glycosylation sites (N145 and N436), the proximal active site signature (61FDRERIPERVVHAKGAGA78), and 12 amino acids (N145, H191, F195, S198, R200, N210, Y212, K234, I299, W300, Q302, and Y355), which were identified as putative residues involved in NADPH binding. These conserved motifs and catalase signature sequences were essential for the structure and function of EfCAT. The present study also investigated the effect of the veterinary food additive zinc oxide on antioxidant processes in E. fetida, at different concentrations and exposure durations. A significant increase (by 106.0 % compared to controls) in CAT activity at 500 mg/kg was registered at day 15. The superoxide dismutase (SOD) activity at 500 mg/kg increased to the maximum value (by 44.0 %) measured at day 15. There was a significant increase in glutathione peroxidase (GPx) activity for all concentrations after 5 days. The results showed that dietary Zn (500 mg/kg) causes oxidative damage to earthworms. At early stages of earthworms exposed to ZnO, GPx is the main enzyme to impair the oxidative status; while at later stages the enzymes CAT and SOD were the main indicators of oxidative stress. The antioxidant enzymatic variations may be an adaptive response of earthworms to survive in contaminated soils.  相似文献   

16.
A proposal for scaling-up the photocatalytic reactors is described and applied to the coated catalytic walls with a thin layer of titanium dioxide under the near ultraviolet (UV) irradiation. In this context, the photocatalytic degradation of isovaleraldehyde in gas phase is studied. In fact, the removal capacity is compared at different continuous reactors: a photocatalytic cylindrical reactor, planar reactor, and pilot unit. Results show that laboratory results can be useful for reactor design and scale-up. The flowrate increases lead to the removal capacity increases also. For example, with pilot unit, when flowrate extends four times, the degradation rate varies from 0.14 to 0.38 g h?1 mcat ?2. The influence of UV intensity is also studied. When this parameter increases, zboth degradation rate and overall mineralization are enhanced. Moreover, the effects of inlet concentration, flowrate, geometries, and size of reactors on the removal capacity are also studied.  相似文献   

17.
The insecticide chlordecone is a contaminant found in most of the banana plantations in the French West Indies. This study aims to search for fungal populations able to grow on it. An Andosol heavily contaminated with chlordecone, perfused for 1 year in a soil–charcoal system, was used to conduct enrichment cultures. A total of 103 fungal strains able to grow on chlordecone-mineral salt medium were isolated, purified, and deposited in the MIAE collection (Microorganismes d'Intérêt Agro-Environnemental, UMR Agroécologie, Institut National de la Recherche Agronomique, Dijon, France). Internal transcribed spacer sequencing revealed that all isolated strains belonged to the Ascomycota phylum and gathered in 11 genera: Metacordyceps, Cordyceps, Pochonia, Acremonium, Fusarium, Paecilomyces, Ophiocordyceps, Purpureocillium, Bionectria, Penicillium, and Aspergillus. Among predominant species, only one isolate, Fusarium oxysporum MIAE01197, was able to grow in a liquid culture medium that contained chlordecone as sole carbon source. Chlordecone increased F. oxysporum MIAE01197 growth rate, attesting for its tolerance to this organochlorine. Moreover, F. oxysporum MIAE01197 exhibited a higher EC50 value than the reference strain F. oxysporum MIAE00047. This further suggests its adaptation to chlordecone tolerance up to 29.2 mg l?1. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that 40 % of chlordecone was dissipated in F. oxysporum MIAE01197 suspension culture. No chlordecone metabolite was detected by GC-MS. However, weak amount of 14CO2 evolved from 14C10-chlordecone and 14C10-metabolites were observed. Sorption of 14C10-chlordecone onto fungal biomass followed a linear relationship (r 2?=?0.99) suggesting that it may also account for chlordecone dissipation in F. oxysporum MIAE01197 culture.  相似文献   

18.
Fluoride concentrations were determined in PM10 samples collected in the urbanized coastal area of the Baltic Sea (Gdynia) in the period between 1 August 2008 and 8 January 2010. F? concentrations remained within the range of 0.4–36.6 ng?·?m?3. The economic transformations which have taken place in Poland increasing ecological awareness have had an excellent effect on the levels of fluoride pollution in the air of the studied region. In our measurements, fluoride concentrations increased in wintertime, when air temperature dropped, at low wind speeds (<1 m?·?s?1) and with low dispersion of pollutants originating from local sources (traffic, industry, domestic heating). At times when wind speed grew to >10 m?·?s?1, fluorides were related to marine aerosols or else brought from distant sources. Apart from wind speed and air temperature, other significant meteorological parameters which determined the variability of F? turned out to be air humidity and precipitation volume. Aerosols were washed out effectively, even with small precipitation (h?=?4 mm), and if a dry period lasted for several days, their concentrations grew rapidly to over 30.0 ng?·?m?3.  相似文献   

19.
The degradation of methylparaben (MeP) in water was investigated using a pulsed corona discharge generated in oxygen, above the liquid. A comparison was made between results obtained in semi-batch corona (SBC) configuration (stationary solution, continuous gas flow) and results obtained in a semi-batch corona with recirculation combined with ozonation (SBCR?+?O3), where the liquid is continuously circulated between a solution reservoir and the plasma reactor and the effluent gas containing ozone is bubbled through the solution in the reservoir. It was found that MeP was completely degraded after 10–15 min of treatment in both configurations. Oxidation by ozone alone, in the absence of plasma, was a slower process. The energy efficiency for MeP removal (Y MeP) and for mineralization (Y TOC) was significantly higher in the SBCR?+?O3 configuration (Y MeP?=?7.1 g/kWh at 90 % MeP removal and Y TOC?=?0.41 g/kWh at 50 % total organic carbon (TOC) removal) than in the SBC configuration (Y MeP?=?0.6 g/kWh at 90 % MeP removal and Y TOC?=?0.11 g/kWh at 50 % TOC removal).  相似文献   

20.
Bicarbonate plays a crucial role in limiting the growth of submersed aquatic macrophytes in eutrophic lakes, and high ammonia is often toxic to macrophytes. In order to evaluate the combined effect of HCO3 ? and total ammonia (i.e., the total of NH3 and NH4 +) on submersed macrophytes Vallisneria natans, the growth and physiological response of V. natans in the presence of HCO3 ? and ammonia were studied. The results showed that with the increase of ammonia, morphological parameters of V. natans declined. In contrast, increased HCO3 ? concentration stimulated the growth of V. natans, especially when the NH4 +-N/NO3 ?-N ratio was 1:7. High ammonia concentration induced excess free amino acids (FAA) accumulation and soluble carbohydrates (SC) depletion in plant tissues. However, the elevated HCO3 ? promoted the synthesis of SC and rendered the decrease of FAA/SC ratio. The results also suggested that HCO3 ? could partially alleviate the stress of ammonia, as evidenced by the decrease of FAA/SC ratio and the growth enhancement of V. natans when the ammonia concentration was 0.58 mg?L?1. Given the fact that HCO3 ? is probably the dominant available carbon source in most eutrophic lakes, the ability of V. natans to use HCO3 ? for SC synthesis may explain the alleviating effect of HCO3 ? on V. natans under ammonia stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号