首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Purpose

The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.

Methods

Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.

Results

The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin?CRadushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.

Conclusion

The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.  相似文献   

2.
The adsorption of Hg(II) from aqueous solution at 293 K by activated carbon obtained from furfural is studied. The carbon is prepared by polymerization of furfural following carbonization and activation of the obtained polymer material with water vapor at 800 degrees C. Adsorption studies of Hg(II) are carried out varying some conditions: treatment time, metal ion concentration, adsorbent amount and pH. It is determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms. The adsorption capacity of the carbon is 174 mg/g. It is determined that Hg(II) uptake increases with increasing pH. Desorption studies are performed with hot water. The percent recovery of Hg(II) is 6%.  相似文献   

3.
The lack of water is the most serious threat to humanity that leads to more efficient water and sewage treatment. Currently, many scientists are looking for new coagulants, flocculants and physicochemical methods allowing for sufficient removal of pollutants from water. The presence of various types of pigments, including chromium (III) oxide, poses the major problem. Even small amounts of these substances inhibit life processes in water. In this paper, the stability of Cr2O3 suspension in the absence and the presence of polyacrylic acid (PAA) was determined. To explain the changes in the system stability, the adsorption and electrokinetic measurements were performed. The chromium (III) oxide suspension not containing PAA is the most stable at pH?=?3. Under these conditions, each positively charged solid particle is surrounded by a negatively charged diffusion layer which protects from particle collision and aggregates formation (electrostatic stabilization). In turn, the Cr2O3 suspension containing the PAA is most unstable also at pH?=?3. In this case, the polymer causes destabilization of the colloidal suspension, which results from charge neutralization of solid particles by adsorbed PAA.  相似文献   

4.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

5.
探讨了改性松针(GXLsp)作为吸附剂对水体中铅离子的吸附性能,考察了吸附时间、溶液pH值、吸附剂用量、盐离子浓度、Pb(II)初始浓度及温度对改性松针吸附Pb(II)的影响。利用Langmuir和Freundlich等温线模型对实验数据进行非线性拟合分析,结果表明,Freundlich等温线模型能很好地描述松针对Pb(II)的吸附过程。热力学参数表明吸附是一个自发的吸热过程。改性松针对铅的吸附行为符合拟二级动力学方程,表明吸附过程是以化学吸附为主。在293K时松针对Pb(II)的饱和吸附量为318.3 mg/g,因此,GXLsp可作为一种高效低值生物质吸附剂以去除水体中重金属Pb(II)的污染。  相似文献   

6.
Lee CI  Yang WF  Hsieh CI 《Chemosphere》2004,57(9):1173-1180
In this study, a fluidized-bed reactor (FBR) was employed to treat copper-containing wastewater by mean of copper precipitation on the surface of sand grains. The conditions for optimum copper removal efficiency were also investigated. This technology was controlled so as to keep supersaturation low to induce the nucleated precipitation of copper coating on the sand surface in an FBR. The effects of relevant parameters, such as the pH value, the molar ratio of [C(T)] to [Cu(2+)], hydraulic loading and the types of chemical reagents used, were examined. The experimental results indicated that 96% copper removal efficiency could be achieved when the influent copper concentration was 10mg l(-1). The optimum chemical reagent was Na(2)CO(3); the molar ratio of [C(T)]/[Cu(2+)] was 2, and the optimal hydraulic loading was not be more than 25m h(-1). In addition, preventing homogeneous nucleation in the FBR was an important operation parameter. Homogeneous nucleation and molecular growth would lead to undesirable microparticle formation in the effluent. A good mixture of carbonate and copper in the presence of sand grains could reduce the level of homogeneous nucleation in the bottom of the reactor. Energy dispersive analysis (EDS) of X-rays provided insight into the copper coating on the sand surface, and element analysis indicated the weight percentages of CuCO(3) and Cu(OH)(2) in precipitate.  相似文献   

7.
Environmental Science and Pollution Research - The serious environmental risks caused by Pb(II) and Sb(V) co-contamination increase the need for their efficient and simultaneous removal. In this...  相似文献   

8.
The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM.  相似文献   

9.
Removal of PAHs from water using an immature coal (leonardite)   总被引:1,自引:0,他引:1  
It has been studied an immature coal (leonardite) as an adsorbent for removing PAHs [fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene] from water. To determine the efficiency of leonardite as an adsorbent of PAHs, factors such as pH, contact time and equilibrium sorption were evaluated in a series of batch experiments. There were no significant differences in the removal percentages for the various pH values studied, except for fluorene. The adsorption of fluorene was higher at lower pH values. The equilibrium time was reached at 24h. At this time, more than 82% of the pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene had been removed. During the first 2h, the adsorption rate increased rapidly. After that time, however, there was a minor decrease. Equilibrium data were fitted to Freundlich models to determine the water-leonardite partitioning coefficient. Physical adsorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process. The polarity of the humic substances in leonardite may also have influenced the adsorption capacity.  相似文献   

10.
This paper investigates the effects of zeolite particle size, zeolite/ solution ratio and stirring time on the performance of zeolites from Dogantepe in removing Cu(II) from aqueous solution to establish optimum operating conditions. The results indicated that the size of the zeolite samples, the concentration of Cu(II) and the zeolite/solution ratio affected the removal efficiencies, whilst the stirring time was found to have no significant effect on the removal efficiencies. The equivalent numbers of sodium, magnesium, calcium and potassium ions passed into the Cu(II) solution were found to be 1.196, 0.208, 0.117 and 0.009 meq/l, respectively, and the passing percentages of these ions were calculated to be 11.27, 2.45, 1.57 and 0.37%, respectively. The removal mechanism of Cu(II) with zeolite samples was mainly ion exchange with a fraction of approximately 65%. The maximum exchange capacities obtained by using Dogantepe zeolites, Yavu zeolites, and synthetic resin were found to be 9.2, 7.0 and 72.7 mg/g, respectively. However, in relatively low concentrations of Cu(II), the differences in the removal efficiencies or exchange capacities obtained for above different three materials were significantly decreased.  相似文献   

11.
Environmental Science and Pollution Research - Plant-based biomass (CFB (carnauba fruit biomass)) obtained from the fruit exocarp of the species Copernicia prunifera (Mill.) H.E. Moore (carnauba)...  相似文献   

12.
Environmental Science and Pollution Research - In this work, it was analyzed the behavior of three commercial activated carbons with different textural and chemical properties to adsorb...  相似文献   

13.
Environmental Science and Pollution Research - Excess fluoride (F) ion of drinking water is a major problem in many areas of India and causes harmful effects such as dental and skeletal fluorosis....  相似文献   

14.
Environmental Science and Pollution Research - This study investigated the Pb(II) and Cd(II) sorption from aqueous solution by oily sludge-derived char (OSDC) prepared at different pyrolysis...  相似文献   

15.
Biological production of hydrogen sulfide (H(2)S) using sulfate-reducing bacteria (SRB) has important potential within environmental biotechnology. The aim of this work was to study the possibility of using SRB for the treatment of an acid mine drainage (AMD) at bench-scale. This process involved three stages: the optimization of H(2)S production through the utilization of total volatile fatty acids (TVFAs) by SRB, the establishment of a biofilm reactor for sulfide production, and the precipitation of metals by using the biologically produced H(2)S. The substrates used for TVFAs production consisted of papaya, apple and banana. The H(2)S produced from the degradation of TVFAs was utilized for the precipitation of a metal-contaminated effluent collected from Bolivar mine (Oruro, Bolivia). The maximum concentration of H(2)S obtained was approximately 16mM. Removal efficiencies of ca. 100% for copper, above 94% for zinc, and above 92% for lead were achieved.  相似文献   

16.
In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150–650 μg?L?1 and 80–300 μg?L?1, respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg?L?1. Optimized working conditions are defined as acetate buffer of pH?5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.  相似文献   

17.
In the present study biosorption technique, the passive accumulation of metals by biomass, is used for the removal of nickel from aqueous medium. The brown algae, Sargassum sp., in its natural and acid treated forms are used as a low cost sorbent. The adsorption characteristics of nickel on Sargassum sp. are evaluated as a function of time, pH, adsorbent dosage and initial concentration of nickel. The equilibrium adsorption data are fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters are evaluated. Both the models represent the experimental data satisfactorily. The adsorption follows Lagergren first order kinetic model. The monolayer adsorption capacities of natural and acid treated forms of algae as obtained from Langmuir adsorption model are found to be 181 and 250mg g(-1) respectively.  相似文献   

18.
This study was undertaken to evaluate the biosorption potential of a natural, low-cost biosorbent, Rambai leaves (Baccaurea motleyana), to remove trace amounts of Hg(II) from aqueous solutions. It was found that the amount of Hg(II) biosorption by Rambai leaves increased with initial metal ion concentration, contact time, and solution pH but decreased as the amount of biosorbent increased. The maximum biosorption capacity was 121.95 mg/g for an initial concentration range of 5 to 120 ppb. Overall, kinetic studies showed that the Hg(II) biosorption process followed pseudo-second-order kinetics based on pseudo-first-order and intraparticle diffusion models. Isotherm data revealed that the biosorption process followed both Freundlich and Langmuir isotherms. The value of separation factor, R(L), from the Langmuir equation and rate of biosorption, n, from the Freundlich model also indicated favorable adsorption.  相似文献   

19.
Environmental Science and Pollution Research - A novel marine fungus was isolated and classified as Aspergillus flavus strain EGY11. The heat-inactivated form of isolated Aspergillus flavus was...  相似文献   

20.
改性天然菱铁矿去除水中六价铬   总被引:1,自引:0,他引:1  
六价铬Cr(Ⅵ)是地下水污染的重要组分之一。近几年吸附法除铬被广泛应用。为了强化Cr(Ⅵ)的去除效率,对成本低廉的天然菱铁矿进行了改性,并研究了最优改性条件及其对Cr(Ⅵ)的吸附特性。经过不同温度的灼烧改性发现,在500℃灼烧20 min时改性材料去除地下水中Cr(Ⅵ)的效率最高,在25℃时其吸附容量可达0.092 mg/g,吸附效率为92%。通过一系列的静态批实验,考察了最优改性菱铁矿对水中Cr(Ⅵ)的吸附效果。结果表明,二级吸附动力学模型可以更好地描述不同温度下的吸附过程。与Langmuir等温吸附模型相比,等温吸附数据更好地符合Freundlich等温吸附模型。溶液pH对改性天然菱铁矿的吸附效果影响较大,pH在2~8之间吸附容量基本稳定;当pH=8~11时,随着pH升高吸附量明显减小。SEM、比表面积、ZPC测定等结果表明,改性菱铁矿比表面积增大,pHzpc在7.8左右。因此,比表面积、表面电荷的分布等表面性质是改性天然菱铁矿除铬性能强的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号