首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
选取河北省唐山市2017年12月27~31日一次典型重污染过程,开展其污染特征及成因分析,对污染期间气象要素、大气颗粒物组分特征进行综合研究.结果表明,此次大气重污染过程中PM2.5平均质量浓度为154μg/m3,重度污染及以上时PM2.5/PM10为0.7;PM2.5中SNA质量浓度占比达58.0%,OC/EC的比值为4.1,说明颗粒物二次反应和有机物在此次污染过程有较大贡献;长期均压场以及近地面高湿、小风、逆温的出现导致唐山地区大气层结稳定,加之周边地区区域传输的贡献,是导致此次大气重污染过程的重要影响因素.  相似文献   

2.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

3.
北京地区秋冬季大气污染特征及成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究近两年北京地区PM2. 5污染特征及成因变化,利用常规观测资料和改进的后向轨迹模型(Traj Stat)对2016~2017年秋冬季大气重污染时段的颗粒物浓度、气象要素和气团传输路径进行了综合分析.结果表明,研究期间北京地区共发生13次持续2 d以上的重污染事件,冬季过程约占61. 5%,且污染程度和持续时间均高于秋季.地面受弱气压场控制、高湿度、静小风以及较低的混合层高度,加之北京三面环山的特殊地势是导致秋冬季静稳型污染频发的重要因素,重污染期间PM2. 5/PM10的平均比值高达0. 86.累积阶段气团主要来自于西北、偏西、西南和东南方向,其中西南和东南路径为典型污染传输通道,轨迹频率为21. 6%.此外,采用WRF-CAMx模型定量估算了2016年12月16~22日典型过程中本地和外来污染源对北京PM2. 5的贡献,结果发现不同气团输送条件下,二者的贡献差异较大.当南部气团输入时,本地贡献会显著下降,以外部区域输送为主导;若气流来自西北方向情况则相反.污染过程期间,本地贡献为16. 5%~69. 3%.  相似文献   

4.
为了解邢台市秋冬季重污染过程的污染特征,于2018年11月10-16日,在邢台市一中、内丘以及沙河3个点位采集PM2.5样品,分析PM2.5浓度及其化学组分.结果表明:重污染过程期间邢台市PM2.5平均浓度为176.2 μg/m3,超过GB 3095-2012《环境空气质量标准》二级标准限值1.4倍;水溶性离子以NO3...  相似文献   

5.
冬季北京城区大气重污染特征分析   总被引:1,自引:0,他引:1  
为研究北京市城区大气重污染特征,对2013年12月~2014年2月期间北京市6次大气重污染过程的PM2.5浓度水平、化学组成以及大气氧化性和气象要素特征进行了分析。结果表明,重污染日PM2.5平均质量浓度达到265.0μg/m3,是非重污染日的3.5倍。 PM2.5组分中NO3-,SO42-,NH4+和有机碳(OC)在重污染日的平均浓度分别是非重污染日的6.8,3.4,2.7和2.6倍。前3次过程中SO42-浓度最高,后3次过程中SO42-浓度与NO3-浓度接近。从气象要素来看,重污染期间的基本特征为地面温度升高、相对湿度增大、地面气压降低和风速减小。重污染日的能见度显著降低,平均能见度仅为非重污染日的34.4%。重污染日的大气氧化性明显增强,大气氧化剂OX平均浓度是非重污染日的1.5倍,(OC)/(EC)平均比值是非重污染日的1.6倍。  相似文献   

6.
以阳泉市2018年12月26日~2019年1月20日发生的典型大气重污染过程为例,研究了山地型城市冬季大气重污染过程特征及成因.结果表明,重污染发生时段首要污染物为PM2.5,水溶性离子和碳质组分是PM2.5主要组分,其中二次离子SO42-、NO3-和NH4+是主要水溶性离子成分(共占离子组分的87.7%),二次有机碳...  相似文献   

7.
8.
韩笑颜  周颖  吕喆  王晓琦 《环境科学研究》2020,33(10):2235-2245
为探究典型重污染过程的污染特征与大气边界层结构演变规律,基于PM2.5采样数据、气象观测数据及WRF-Chem模式,以北京市和石家庄市2016年12月27日—2017年1月10日一次重污染过程为研究对象,对气象要素、PM2.5化学组分、天气背景场、边界层结构演变特征,以及大气边界层结构变化对ρ(PM2.5)及其主要化学组分的影响进行分析.结果表明:①研究期间,北京市和石家庄市ρ(PM2.5)分别为(165.63±110.89)(247.67±95.22)μg/m3,石家庄市污染程度高于北京市;高空纬向环流和地面弱高压控制的天气背景场,低于1.75 m/s的风速以及超过75%的相对湿度是造成北京市与石家庄市重污染的不利气象条件.②重污染时段北京市与石家庄市SNA(SO42-、NO3-、NH4+三者的统称)与碳质组分(OC、EC)占比之和超过76%,是PM2.5中的两大主要组分;重污染时段ρ(SNA)占比明显上升,北京市与石家庄市ρ(SNA)占比由非重污染时段的42.23%、45.93%分别升至重污染时段的58.87%、59.62%;北京市与石家庄市ρ(OC)/ρ(EC)分别为5.13、3.51,表明在重污染时段两城市存在明显的二次有机气溶胶污染.③WRF-Chem模式模拟结果表明,PM2.5污染严重时北京市与石家庄市在300~500 m处均出现明显的逆温,垂直风场主要表现为低层偏南风顺时针向上切变为偏西风,切变高度在400~1 000 m,逆温层结与明显垂直风切变的边界层特征共同抑制了污染物的湍流与扩散.④北京市与石家庄市重污染时段的PBLH(Planetary Boundary Layer Height,大气边界层高度)日均值与非重污染时段相比分别下降了202、128 m,PBLH每下降100 m,北京市与石家庄市ρ(PM2.5)分别上升18.81、29.85 μg/m3,PBLH下降是导致两城市ρ(PM2.5)快速上升的重要因素.北京市与石家庄市的PBLH与PM2.5组分质量浓度之间的相关性不同,北京市PBLH与ρ(SNA)的相关性高于与碳质组分质量浓度的相关性,石家庄市PBLH与ρ(EC)相关性最高,表明此次重污染过程中北京市PM2.5污染特征以二次形成为主,而石家庄市以一次排放为主.研究显示,北京市与石家庄市此次重污染过程与大气边界层结构变化密切相关.   相似文献   

9.
结合南通市空气自动站、大气超级站、气象台的多种在线仪器设备逐时监测数据,对南通市冬季一次典型重污染过程成因及特征进行了分析.结果 表明,外来输入和本地聚集的污染物,在高压控制、大气静稳的天气形势下,难以扩散,导致了本次重污染过程.本次污染以细小颗粒物为主,粒径小于2.5μm的颗粒物占总和的99.99%.首要污染物PM2...  相似文献   

10.
天山北坡是重污染天气消除攻坚战的重点区域,为了解该区域冬季大气重污染期间NH4+污染特征及其对PM2.5浓度的贡献,2020年12月—2021年1月在该区域典型工业城市石河子市城区对气态NH3和PM2.5中水溶性离子的浓度进行了连续监测,分析了不同空气质量等级下PM2.5中NH4+浓度和NH3-NH4+气固转化率的变化以及NH4+的赋存形式.结果表明:①监测期间,石河子市大气PM2.5、NH4+和其他阳离子的平均浓度分别为164、25.3和3.60μg/m3,NH4+浓度是其他阳离子总浓度的7.0倍;NH4+浓度在PM2.5浓度中的占比为15.4%,仅次于SO42?和NO3?.NH4+和其他阳离子浓度均随污染加重逐渐升高,但NH4+浓度的增幅远大于其他阳离子.②随着污染加重,NH3-NH4+气固转化率逐渐升高,其在优良天、轻度和中度污染天、重度及以上污染天分别为0.23、0.51、0.69.整体上,NH3-NH4+气固转化率与PM2.5和NH4+浓度均呈显著正相关,与气态NH3浓度和大气温度均呈负相关.③石河子市冬季大气NH4+充足,主要以(NH4)2SO4的形式赋存,剩余NH4+以NH4NO3和NH4Cl的形式赋存.研究显示,天山北坡区域冬季大气重污染期间NH3-NH4+气固转化率和NH4+浓度均显著升高,大气污染防治工作在关注SO2和NOx污染控制的同时,也需要加强对NH3的污染治理.  相似文献   

11.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65.4%),主要来源为燃煤(24.4%)和工业工艺源(23.7%).随...  相似文献   

12.
13.

为探讨新冠肺炎疫情期间天津市重污染天气成因,利用环境监测、气象常规观测及255 m气象塔梯度观测,结合WRF-Chem模式研究了天津市2020年2月9—13日新冠肺炎疫情期间重污染过程来源及边界层特征。结果表明:水平和垂直扩散条件变差、地面弱气压场和暖湿明显为此次重污染天气的主要特征;重污染天气过程外来源的区域输送率达54.6%;稳定类层结(E类和F类)占比高达67.5%,较为稳定的大气造成大气扩散条件变差,是污染发生的重要气象条件;污染过程逆温率达50.0%,垂直温差、逆温厚度、逆温强度与PM2.5浓度相关性分别为0.99、0.90和0.56,逆温层的存在是污染过程维持的主要因素。

  相似文献   

14.
王嫒  陈娅 《环境科学与管理》2012,37(7):61-64,84
近年来,随着社会和经济的不断发展,人们对室内外空气质量的重视程度也不断提高。室内外空气质量尤其是细颗粒物污染与人群健康密切相关。北京市大气细颗粒物污染形势十分严峻,因此,相关研究也成为国内外研究的热点和难点问题。本文对北京市某区域年龄在9~11岁之间的38名健康儿童人群活动场所夏季PM2.5的污染特征作了研究评价。结果表明,运用室内外环境监测与问卷调查法相结合的研究方法,儿童人员夏季PM2.5室内外浓度呈现明显的时间、空间变化特征,并受到气象因素及室内外源排放的共同影响。  相似文献   

15.
2013年1月北京市一次空气重污染成因分析   总被引:10,自引:17,他引:10       下载免费PDF全文
采用数值模式与观测资料相结合的方式,对北京市2013年1月9日至15日一次空气重污染过程的大气环境背景、气象条件和形成原因进行了初步分析.结果表明,重污染过程期间10日至14日PM2.5平均值为323μg·m-3;重污染过程与当地气象条件密切相关,稳定的大气环流形势为污染的持续提供了大气环流背景,风速较小、湿度较大、边界层较低、持续逆温是造成重污染的主要原因;重污染过程中区域输送对北京PM2.5贡献率在53%~69%之间且存在明显的二次转化,区域输送起着更为重要的作用;气象条件对持续性重污染的形成和破坏起到了关键性的作用,因此需要加强对重污染预警预报研究,以有效预防和控制空气重污染.  相似文献   

16.
2020年天津市两次重污染天气污染特征分析   总被引:4,自引:5,他引:4       下载免费PDF全文
为了解2020年天津市两次重污染天气污染特征,基于2020年1~2月高时间分辨率的在线监测数据,对天津市2020年1月16~18日(重污染过程Ⅰ)和2020年2月9~10日(重污染过程Ⅱ)进行分析,结果表明,两次重污染过程均呈现前期区域输送和后期本地不利气象条件叠加双重影响的特点,重污染过程期间平均风速均较低,平均相对...  相似文献   

17.
根据深圳市龙华区观澜子站空气质量监测数据,对龙华区近年来空气质量状况、主要大气污染物浓度时间变化特征、气象条件和污染物浓度相关性,以及典型臭氧(O_3)污染过程进行了分析。结果表明龙华区空气质量以优良为主,空气质量指数(AQI)超标日中,O_3浓度超标天数最多,其次依次是PM_(2.5)、PM_(10)和二氧化氮(NO_2)。PM_(2.5)、PM_(10)和NO_2在秋冬季的浓度最高,春季次之,夏季最低;而O_3浓度则在夏秋季最高,春季次之,冬季最低。除O_3(日间浓度高于夜间浓度)以外,PM_(2.5)、PM10和NO_2晚间浓度高于日间浓度。此外,相关性研究表明,颗粒物污染以细颗粒物为主,O_3(8 h)和NO_2与颗粒物浓度均呈正相关性。由于地域差异的存在,O_3(8 h)和颗粒物浓度的相关性在不同地域表现也不同。同时,大气污染物浓度与气象条件和人为排放源的相关性较高。  相似文献   

18.
济南市冬季一次典型重污染过程分析   总被引:2,自引:1,他引:2       下载免费PDF全文
为掌握济南市重污染天气发生规律,从而更好地为重污染天气预报预警和大气污染防治提供参考,采用空气质量监测数据、气象观测资料、雷达探测资料及轨迹模式模拟相结合的方法,对济南市2016年12月31日-2017年1月7日的持续性重污染过程,从污染演变过程、环流背景分析、气象要素特征和区域污染传输等多方面分析其形成原因及主要影响因素.结果表明:此次重污染过程期间首要污染物为颗粒物,ρ(PM10)平均值为318 μg/m3,ρ(PM2.5)平均值为200 μg/m3;地面风速在0.6~1.8 m/s范围内,风力均为1~2级,相对湿度为68%~95%,平均相对湿度为81%.在重污染过程中,从地面至800 m左右高度始终维持较强逆温层,逆温频次高达91.1%,污染边界层高度较低,大部分时间都在500 m以下.采用情景模拟分析方法计算得到,区域输送对济南市PM2.5的贡献率为20%~35%.研究显示:此次重污染过程是在区域性污染背景下由本地不利的扩散条件造成的,静稳大气形势提供有利的环流背景,平流雾、辐射雾交替产生,持续性的高湿加重了污染程度;近地面的静风、高湿,垂直方向的双逆温层甚至多逆温层的结构是影响此次重污染过程的重要气象要素;区域性污染传输对此次重污染天气的发展有显著贡献,污染初期主要来自河北省中南部的输送,随着污染加重,有来自偏南、偏东方向的局地气团输送.   相似文献   

19.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

20.
2020年春节期间天津市重污染天气污染特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
为了解春节期间重污染天气污染特征,基于城区点位2020年1月高时间分辨率的在线监测数据,开展天津市春节期间重污染分析.结果表明:区域污染物输送叠加本地污染物排放和不利气象条件导致春节重污染的发生,重污染期间天津市平均风速为0.97 m?s-1,平均相对湿度为70%左右,边界层高度为210 m,水平和垂直扩散条件均较差....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号