共查询到20条相似文献,搜索用时 15 毫秒
1.
选取河北省唐山市2017年12月27~31日一次典型重污染过程,开展其污染特征及成因分析,对污染期间气象要素、大气颗粒物组分特征进行综合研究.结果表明,此次大气重污染过程中PM2.5平均质量浓度为154μg/m3,重度污染及以上时PM2.5/PM10为0.7;PM2.5中SNA质量浓度占比达58.0%,OC/EC的比值为4.1,说明颗粒物二次反应和有机物在此次污染过程有较大贡献;长期均压场以及近地面高湿、小风、逆温的出现导致唐山地区大气层结稳定,加之周边地区区域传输的贡献,是导致此次大气重污染过程的重要影响因素. 相似文献
2.
北京冬季一次重污染过程的污染特征及成因分析 总被引:9,自引:0,他引:9
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因. 相似文献
3.
北京地区秋冬季大气污染特征及成因分析 总被引:1,自引:0,他引:1
为了研究近两年北京地区PM2. 5污染特征及成因变化,利用常规观测资料和改进的后向轨迹模型(Traj Stat)对2016~2017年秋冬季大气重污染时段的颗粒物浓度、气象要素和气团传输路径进行了综合分析.结果表明,研究期间北京地区共发生13次持续2 d以上的重污染事件,冬季过程约占61. 5%,且污染程度和持续时间均高于秋季.地面受弱气压场控制、高湿度、静小风以及较低的混合层高度,加之北京三面环山的特殊地势是导致秋冬季静稳型污染频发的重要因素,重污染期间PM2. 5/PM10的平均比值高达0. 86.累积阶段气团主要来自于西北、偏西、西南和东南方向,其中西南和东南路径为典型污染传输通道,轨迹频率为21. 6%.此外,采用WRF-CAMx模型定量估算了2016年12月16~22日典型过程中本地和外来污染源对北京PM2. 5的贡献,结果发现不同气团输送条件下,二者的贡献差异较大.当南部气团输入时,本地贡献会显著下降,以外部区域输送为主导;若气流来自西北方向情况则相反.污染过程期间,本地贡献为16. 5%~69. 3%. 相似文献
4.
5.
冬季北京城区大气重污染特征分析 总被引:1,自引:0,他引:1
为研究北京市城区大气重污染特征,对2013年12月~2014年2月期间北京市6次大气重污染过程的PM2.5浓度水平、化学组成以及大气氧化性和气象要素特征进行了分析。结果表明,重污染日PM2.5平均质量浓度达到265.0μg/m3,是非重污染日的3.5倍。 PM2.5组分中NO3-,SO42-,NH4+和有机碳(OC)在重污染日的平均浓度分别是非重污染日的6.8,3.4,2.7和2.6倍。前3次过程中SO42-浓度最高,后3次过程中SO42-浓度与NO3-浓度接近。从气象要素来看,重污染期间的基本特征为地面温度升高、相对湿度增大、地面气压降低和风速减小。重污染日的能见度显著降低,平均能见度仅为非重污染日的34.4%。重污染日的大气氧化性明显增强,大气氧化剂OX平均浓度是非重污染日的1.5倍,(OC)/(EC)平均比值是非重污染日的1.6倍。 相似文献
6.
8.
为探究典型重污染过程的污染特征与大气边界层结构演变规律,基于PM2.5采样数据、气象观测数据及WRF-Chem模式,以北京市和石家庄市2016年12月27日—2017年1月10日一次重污染过程为研究对象,对气象要素、PM2.5化学组分、天气背景场、边界层结构演变特征,以及大气边界层结构变化对ρ(PM2.5)及其主要化学组分的影响进行分析.结果表明:①研究期间,北京市和石家庄市ρ(PM2.5)分别为(165.63±110.89)(247.67±95.22)μg/m3,石家庄市污染程度高于北京市;高空纬向环流和地面弱高压控制的天气背景场,低于1.75 m/s的风速以及超过75%的相对湿度是造成北京市与石家庄市重污染的不利气象条件.②重污染时段北京市与石家庄市SNA(SO42-、NO3-、NH4+三者的统称)与碳质组分(OC、EC)占比之和超过76%,是PM2.5中的两大主要组分;重污染时段ρ(SNA)占比明显上升,北京市与石家庄市ρ(SNA)占比由非重污染时段的42.23%、45.93%分别升至重污染时段的58.87%、59.62%;北京市与石家庄市ρ(OC)/ρ(EC)分别为5.13、3.51,表明在重污染时段两城市存在明显的二次有机气溶胶污染.③WRF-Chem模式模拟结果表明,PM2.5污染严重时北京市与石家庄市在300~500 m处均出现明显的逆温,垂直风场主要表现为低层偏南风顺时针向上切变为偏西风,切变高度在400~1 000 m,逆温层结与明显垂直风切变的边界层特征共同抑制了污染物的湍流与扩散.④北京市与石家庄市重污染时段的PBLH(Planetary Boundary Layer Height,大气边界层高度)日均值与非重污染时段相比分别下降了202、128 m,PBLH每下降100 m,北京市与石家庄市ρ(PM2.5)分别上升18.81、29.85 μg/m3,PBLH下降是导致两城市ρ(PM2.5)快速上升的重要因素.北京市与石家庄市的PBLH与PM2.5组分质量浓度之间的相关性不同,北京市PBLH与ρ(SNA)的相关性高于与碳质组分质量浓度的相关性,石家庄市PBLH与ρ(EC)相关性最高,表明此次重污染过程中北京市PM2.5污染特征以二次形成为主,而石家庄市以一次排放为主.研究显示,北京市与石家庄市此次重污染过程与大气边界层结构变化密切相关. 相似文献
9.
天山北坡是重污染天气消除攻坚战的重点区域,为了解该区域冬季大气重污染期间NH4+污染特征及其对PM2.5浓度的贡献,2020年12月—2021年1月在该区域典型工业城市石河子市城区对气态NH3和PM2.5中水溶性离子的浓度进行了连续监测,分析了不同空气质量等级下PM2.5中NH4+浓度和NH3-NH4+气固转化率的变化以及NH4+的赋存形式.结果表明:(1)监测期间,石河子市大气PM2.5、NH4+和其他阳离子的平均浓度分别为164、25.3和3.60μg/m3,NH4+浓度是其他阳离子总浓度的7.0倍;NH4+浓度在PM... 相似文献
10.
11.
12.
为探讨新冠肺炎疫情期间天津市重污染天气成因,利用环境监测、气象常规观测及255 m气象塔梯度观测,结合WRF-Chem模式研究了天津市2020年2月9—13日新冠肺炎疫情期间重污染过程来源及边界层特征。结果表明:水平和垂直扩散条件变差、地面弱气压场和暖湿明显为此次重污染天气的主要特征;重污染天气过程外来源的区域输送率达54.6%;稳定类层结(E类和F类)占比高达67.5%,较为稳定的大气造成大气扩散条件变差,是污染发生的重要气象条件;污染过程逆温率达50.0%,垂直温差、逆温厚度、逆温强度与PM2.5浓度相关性分别为0.99、0.90和0.56,逆温层的存在是污染过程维持的主要因素。
相似文献13.
近年来,随着社会和经济的不断发展,人们对室内外空气质量的重视程度也不断提高。室内外空气质量尤其是细颗粒物污染与人群健康密切相关。北京市大气细颗粒物污染形势十分严峻,因此,相关研究也成为国内外研究的热点和难点问题。本文对北京市某区域年龄在9~11岁之间的38名健康儿童人群活动场所夏季PM2.5的污染特征作了研究评价。结果表明,运用室内外环境监测与问卷调查法相结合的研究方法,儿童人员夏季PM2.5室内外浓度呈现明显的时间、空间变化特征,并受到气象因素及室内外源排放的共同影响。 相似文献
14.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65. 4%),主要来源为燃煤(24. 4%)和工业工艺源(23. 7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州... 相似文献
15.
2013年1月北京市一次空气重污染成因分析 总被引:10,自引:17,他引:10
采用数值模式与观测资料相结合的方式,对北京市2013年1月9日至15日一次空气重污染过程的大气环境背景、气象条件和形成原因进行了初步分析.结果表明,重污染过程期间10日至14日PM2.5平均值为323μg·m-3;重污染过程与当地气象条件密切相关,稳定的大气环流形势为污染的持续提供了大气环流背景,风速较小、湿度较大、边界层较低、持续逆温是造成重污染的主要原因;重污染过程中区域输送对北京PM2.5贡献率在53%~69%之间且存在明显的二次转化,区域输送起着更为重要的作用;气象条件对持续性重污染的形成和破坏起到了关键性的作用,因此需要加强对重污染预警预报研究,以有效预防和控制空气重污染. 相似文献
16.
为揭示邯郸市空气污染过程及形成原因,以邯郸市环境监测中心为采样点,对采样滤膜进行离子和碳质组分测试,探讨PM2.5组分浓度变化特征,并利用WRF-CAMx空气质量模型模拟分析2017~2018年秋冬季3次重污染前后邯郸市各个地区各类污染源大气污染排放对PM2.5质量浓度的贡献.结果显示,重污染期间邯郸市水溶性粒子占PM2.5质量浓度的62.4%,二次离子中呈现NO3- > SO42- > NH4+变化趋势.受地面均压场和高压底部控制及500hPa高空纬向环流影响,污染物水平方向和垂直方向传输受到抑制,同时边界层高度的降低进一步加剧PM2.5污染浓度的升高,随着西伯利亚东部高压和欧亚大陆高压南下以及边界层高度的上升,3次重污染过程得以彻底清除.PSAT示踪模块结果表明复兴区,丛台区和永年区是邯郸市PM2.5浓度贡献的主要区县,3个区县重污染贡献总和为66.8%~72.2%,重污染时段冶金,交通源和居民散煤燃烧是3大主要污染源. 相似文献
17.
2020年天津市两次重污染天气污染特征分析 总被引:4,自引:5,他引:4
为了解2020年天津市两次重污染天气污染特征,基于2020年1~2月高时间分辨率的在线监测数据,对天津市2020年1月16~18日(重污染过程Ⅰ)和2020年2月9~10日(重污染过程Ⅱ)进行分析,结果表明,两次重污染过程均呈现前期区域输送和后期本地不利气象条件叠加双重影响的特点,重污染过程期间平均风速均较低,平均相对湿度接近70%,部分时段接近饱和,边界层高度低于300 m,水平和垂直扩散条件均较差.与重污染过程Ⅰ相比,重污染过程Ⅱ主要污染物浓度和污染程度均降低,尤其是NO2浓度下降明显,重污染过程Ⅱ北部地区PM2.5和CO浓度较高.两次重污染过程PM2.5中化学组分浓度和占比发生明显变化,重污染过程Ⅰ二次无机离子(SO42-、 NO-3和NH+4)、 EC和Ca2+平均浓度较高,OC和Cl-平均浓度略低于重污染过程Ⅱ,K+... 相似文献
18.
针对2017~2018年采暖季太原市PM2.5及其水溶性离子、碳质组分和无机元素开展在线观测,结合气象数据分析不同污染水平下的组分特征.分析表明,2017~2018年太原市采暖季细颗粒物主要化学成分为SO42-、NO3-、NH4+、Cl-、Ca2+、OC、EC,且呈现OC>SO42- > NO3- > NH4+ > Cl- > Ca2+ > EC的趋势,随污染水平增长最多的是二次无机物;优良、轻度污染和重污染3种污染水平下OC、EC相关系数分别为0.69、0.66、0.55,N/S分别为1.06、1.29、0.93,表明随着污染水平的提高,OC和EC的来源一致性逐步变差,且排放源虽仍处于氮排放源(移动源和工业源)和硫排放源(燃煤源)的共同控制,但硫排放源贡献率显著升高.重污染事件分析表明太原市重污染应对过程中不仅需要加强机动车、工业源等污染源的管控,更需要重点加强燃煤管控. 相似文献
19.
2016年12月17~19日重污染期间,在天津市武清区高村开展车载系留气球颗粒物浓度垂直观测,并以观测数据为基础,计算了区域内PM_(2.5)传输通量.结果表明重污染过程期间,大气混合层较低,约200 m左右,PM_(2.5)浓度垂直分布特征与混合层高度密切相关,混合层以下,PM_(2.5)浓度较高,垂直变化特征不显著,形成明显的污染层,混合层以上,PM_(2.5)浓度迅速降低并维持在降低水平.观测期间,粒径小于1. 0μm颗粒物浓度较高,粒径大于2. 2μm颗粒物浓度较低,近地层粒径为0. 777μm颗粒物浓度最高.颗粒物浓度粒径谱分布与相对湿度和混合层高度相关,高湿度和低混合层下颗粒物浓度粒径谱分布较宽泛.观测期间,PM_(2.5)在西南方向上的传输通量最高,占总传输通量的63. 3%,其中46~156 m和156~296 m高度之间PM_(2.5)传输通量最高.近地面300 m内PM_(2.5)传输主要以西南方向传输为主,300 m以上传输方向较分散. 相似文献
20.
根据深圳市龙华区观澜子站空气质量监测数据,对龙华区近年来空气质量状况、主要大气污染物浓度时间变化特征、气象条件和污染物浓度相关性,以及典型臭氧(O_3)污染过程进行了分析。结果表明龙华区空气质量以优良为主,空气质量指数(AQI)超标日中,O_3浓度超标天数最多,其次依次是PM_(2.5)、PM_(10)和二氧化氮(NO_2)。PM_(2.5)、PM_(10)和NO_2在秋冬季的浓度最高,春季次之,夏季最低;而O_3浓度则在夏秋季最高,春季次之,冬季最低。除O_3(日间浓度高于夜间浓度)以外,PM_(2.5)、PM10和NO_2晚间浓度高于日间浓度。此外,相关性研究表明,颗粒物污染以细颗粒物为主,O_3(8 h)和NO_2与颗粒物浓度均呈正相关性。由于地域差异的存在,O_3(8 h)和颗粒物浓度的相关性在不同地域表现也不同。同时,大气污染物浓度与气象条件和人为排放源的相关性较高。 相似文献