首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
重庆主城餐厨垃圾理化性质及产甲烷潜能分析   总被引:3,自引:0,他引:3  
何琴  李蕾  何清明  彭绪亚 《环境化学》2014,(12):2191-2197
以重庆市主城区的餐厨垃圾为研究对象,调查分析其组成成分及粒径、含水率、挥发性固体(VS)含量等理化性质,并通过半连续式单相厌氧消化试验,进一步研究餐厨垃圾在中温条件下37±2℃的产甲烷性能.结果表明,重庆市主城区餐厨垃圾的主要成分为食物残渣、厨余废物等易消化物质,并具有含水率、含油率和VS含量较高等特性;半连续式厌氧消化试验所得实际产甲烷潜能为0.363—0.713 L CH4·g-1VS,占理论产甲烷潜能的45.77%—89.93%,稳定运行时VS去除率达到88.87%—93.85%.中温厌氧消化技术能有效地处理重庆市餐厨垃圾并同时从中高效地回收清洁能源沼气.  相似文献   

2.
餐厨垃圾厌氧消化是一种可回收再生能源的生物处理技术,目前运行中主要存在系统稳定性差和效率低等问题,添加碳基材料能够提高餐厨垃圾厌氧消化效率并对系统运行产生积极影响.从甲烷产生和微生物群落变化两方面,综述碳基材料(生物炭、活性炭、碳布等)作为添加剂对餐厨垃圾厌氧消化系统的影响.其主要影响机理为(1)厌氧消化系统稳定性;(2)种间直接电子传递(DIET);(3)微生物群落.已有研究表明,碳基材料可促进餐厨垃圾厌氧消化产甲烷效率,提升甲烷产量1.1%-1 685%,缩短产甲烷迟滞期27.5%-95.7%.此外,碳基材料添加会引起厌氧消化系统中细菌和古菌群落结构变化,碳基材料通过选择性地富集功能微生物,促进微生物间互营代谢,进而影响系统稳定性和产甲烷效率.提出未来在餐厨垃圾厌氧消化的研究中,应着重关注碳基材料在连续运行系统中的分离与回收方法,优化不同厌氧消化条件下碳基材料的添加策略,通过代谢组学分析探究碳基材料对厌氧消化体系中微生物的作用机制.(图2表2参92)  相似文献   

3.
谷类秸秆接种瘤胃液的厌氧消化性能和三维荧光光谱特征   总被引:1,自引:0,他引:1  
在全自动甲烷潜力测试系统中,以瘤胃液为接种物,研究了谷类秸秆(水稻、小麦和高粱)的产酸产甲烷性能和三维荧光光谱特征。结果表明,奶牛瘤胃微生物对谷类秸秆表现出很强的水解酸化能力。经过5 d厌氧消化,水稻、小麦和高粱秸秆单位质量挥发性固体(VS)的总挥发性脂肪酸(TVFAs)产率分别达410. 9、430. 9和472. 0 mg·g-1。谷类秸秆的产甲烷规律符合改进型Gompertz模型。经过55 d的厌氧消化,水稻、小麦和高粱秸秆(以VS计)的甲烷产量分别为66. 29、103. 79和76. 89 m L·g-1。通过三维荧光光谱耦合平行因子分析(PARAFAC)识别溶解性有机物的3个有效荧光组分,3个组分分别为酪氨酸类物质、色氨酸类物质和低分子量腐殖酸类物质。其中,色氨酸类物质的荧光强度与TVFAs浓度呈幂函数关系。谷类秸秆溶解性有机物的腐殖化指数(HIX)经过5 d厌氧消化后降低,而后呈现逐渐上升趋势。  相似文献   

4.
采用常温(25℃)厌氧消化工艺,通过设计两种不同的进料浓度和4个处理方式,研究了油脂的去除对餐厨垃圾压滤液厌氧消化产沼气的影响,并考察了消化过程中典型工艺参数pH值、挥发性脂肪酸(VFA)、CODCr、总磷等的变化规律.试验结果表明油脂对餐厨垃圾压滤液厌氧消化的产气前期有一定的抑制作用,但是整体抑制不明显.处理T1(未隔油餐厨垃圾滤液800 mL)、T2(隔油餐厨垃圾滤液800 mL)、T3(未隔油餐厨垃圾滤液500 mL)、T4(隔油餐厨垃圾滤液500 mL)的产气总量分别为:84357、55539、45031和31033 mL,其中T1的产气总量是T2的1.52倍;T3的产气总量是T4的1.45倍,结果表明餐厨垃圾滤液不需要经过隔油处理而直接可以用于厌氧消化产沼气.同时,当压滤液低浓度(T3、T4)时,产气差异小;高浓度(T1、T2)时,产气差异大.此外,在整个厌氧消化过程中,处理T1、T2、T3和T4的CODCr总去除率分别为80.44%、78.53%、79.67%和80.7%.  相似文献   

5.
为探求不同形态水葫芦和污泥联合厌氧消化产沼气性能,在中温35±1℃条件下,设置了2个不同的TS浓度(TS=6%和8%),采用不同形态的水葫芦(水葫芦段、水葫芦浆、水葫芦渣、水葫芦粉和水葫芦汁)与污泥进行联合厌氧消化实验.结果表明,水葫芦和污泥联合厌氧消化的累积产甲烷量均高于对照组;添加水葫芦处理的累积产甲烷量从大到小依次为水葫芦渣水葫芦浆水葫芦段水葫芦粉水葫芦汁,水葫芦渣处理的累积产甲烷量比水葫芦汁提高62.5%(TS=6%)和84.5%(TS=8%);系统TS浓度为8%时,各处理的TS甲烷产率均高于TS浓度为6%的结果,且水葫芦渣和污泥联合厌氧消化的产甲烷性能最好,表明水葫芦的压滤和粉碎有助于提高厌氧消化的产甲烷潜力.  相似文献   

6.
基于超声联合热碱破解污泥最佳工艺参数,对预处理污泥进行半连续式中温厌氧消化研究。结果表明,预处理污泥日产甲烷量是原泥的1. 94倍,达234 mL·d~(-1)。运用修正的冈珀兹模型进行累计甲烷产量动力学分析,发现预处理污泥和原泥累计产甲烷曲线与修正的冈珀兹模型拟合系数R2分别达0. 998和0. 993。预处理污泥的动力学参数如下:最大累计产气量达5 376. 4 mL,最大产甲烷速率达394. 8 mL·d~(-1),细菌产甲烷的延迟时间为2. 8 d。预处理污泥的甲烷转化率为82. 17%。从有机物浓度变化来看,厌氧消化期间预处理污泥溶解性化学需氧量、溶解性蛋白质和多糖浓度均远高于原泥,最大值分别是原泥的2. 09、3. 94和3. 95倍。预处理污泥在预处理阶段和厌氧消化阶段的总悬浮物和挥发性悬浮物去除率分别达54. 9%和61. 8%。超声联合热碱预处理不仅能促进污泥有机质破解,还能提高破解有机质的生物可利用性,极大改善污泥厌氧消化效率。  相似文献   

7.
餐厨垃圾具有含水率高、有机物含量高、易腐败等特点,若处理不当,必然造成资源浪费和环境污染。餐厨垃圾减量化、无害化、资源化处理是环境科学领域近年来关注的热点与难点。为解决餐厨垃圾的减量化问题,同时产生清洁能源——氢气,利用自制小型序批式厌氧发酵产氢反应装置,以蒸煮餐厨垃圾为发酵底物,接种污水处理厂剩余污泥进行厌氧发酵产氢,在底物与接种物质量比为4:1,温度为37℃的条件下,研究p H对蒸煮餐厨垃圾厌氧发酵产氢的影响。结果表明,厌氧发酵底物中乙酸和丁酸是挥发性酸(VFA)中主要的组成部分,占总挥发性酸的80%以上,同时含有少量的丙酸,属于典型的丁酸型发酵。初始p H为9.0时,厌氧发酵效果最佳,累积产气量和产氢量最大,分别为748 m L和371 m L;在整个厌氧发酵过程中氢气的体积分数最高可达80.5%,平均产氢速率为10.31 m L·h~(-1),单位产氢量(以VS计)为72.9 m L·g~(-1),总固体(TS)和挥发性固体(VS)的去除率分别高达26.6%和34.4%;脱氢酶的活性呈现出先增强后减弱的趋势,产氢速率与脱氢酶的活性呈正相关;发酵反应进行到16 h时,脱氢酶的活性最好,此时产氢速率最大,为19.2 m L·h~(-1)。因此,调节初始p H为9.0,可以提高餐厨垃圾产氢效率,实现餐厨垃圾减量化和产生清洁能源的双重目标。  相似文献   

8.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

9.
牛粪和厨余垃圾联合厌氧消化试验   总被引:4,自引:1,他引:3  
在37℃条件下对不同比例的牛粪和厨余垃圾进行为期50d的联合厌氧消化试验.结果表明:(1)牛粪与厨余垃圾质量比2/1和1/2联合厌氧消化的实际产气潜能为0.66和0.71L·g-1(以挥发性固体VS质量计),比加权计算值分别提高50%和29%;(2)4种比例物料的甲烷平均浓度约为50%~55%,其生物能范围为18.92~20.81MJ·m-3;(3)在联合厌氧消化过程中,牛粪和厨余垃圾质量比1/2物料的产气效率最高,反应前10d的产气量占总产气量的55.4%,前20d产气量占总产气量的92.2%;(4)纯牛粪、牛粪和厨余垃圾质量比2/1、牛粪和厨余垃圾质量比1/2及纯厨余垃圾4种比例物料厌氧消化的最终生物降解率分别为46.99%、53.31%、70.12%和66.25%.  相似文献   

10.
餐厨垃圾生物处理过程中VOCs的产生与控制研究进展   总被引:2,自引:0,他引:2  
餐厨垃圾生物处理包括好氧堆肥、厌氧消化及卫生填埋等方式,在处理过程中产生的大量挥发性有机物(VOCs)造成二次污染,对环境和人体健康均造成危害.为促进对餐厨垃圾生物处理过程中VOCs的控制,对其产生机理、排放特征及控制方法方面进行综述.已有研究表明:餐厨垃圾生物处理过程产生VOCs可达100种以上.好氧堆肥、厌氧消化、卫生填埋可产生总VOC量分别为57.40-12 736.72 mg/kg、25.98-29.19 mg/m~3和106.20-1 103.70 mg/m~3,且VOCs组成成分复杂,种类与气体量受处理季节、处理时间、处理技术等因素影响较大.当前的VOCs控制技术包括吸附净化、生物净化、热力燃烧等.吸附净化装置简单、成本低但热稳定性差、吸附容量较小;热力燃烧适用于厌氧消化产生的小气体量VOCs,但存在着能耗高、局限性大等缺点.相较于其他控制方法,生物净化具有适用范围广、能耗低、二次污染小、去除效率高等优点,可作为餐厨垃圾生物处理过程中VOCs的主要控制方法.提出未来将餐厨垃圾生物处理过程VOCs产生的微生物机理研究,优化控制技术参数,提高总体去除效率作为重点研究与技术突破方向.(图2表2参76)  相似文献   

11.
传统厌氧消化基质转化慢,甲烷产率和能量回收效率较低.本研究模拟厌氧酸化产生的短链脂肪酸(SCFAs)废水,在批式条件下,利用单室无膜微生物电解池辅助厌氧消化(MEC-AD)产甲烷,考察不同外加电压(0.4 V、0.6V、0.8 V)对底物降解、甲烷产生和能量回收效率的影响.结果表明,进水化学需氧量(C OD)浓度约为7 000 mg/L时,COD的平均去除负荷由AD的(3.34±0.09)k g m-3 d~(-1)提高到MEC-AD的(6.86±0.04)kg m-3 d~(-1)(外加0.8 V),增加了1.06倍.外加电压与脂肪酸组分的降解呈正相关,即随着外加电压的升高,底物各SCFA降解速率加快,此时相应的甲烷含量、产量明显提高.当外加电压为0.8 V时,混合脂肪酸中乙酸、丙酸及丁酸的降解速度较AD分别提高了98.25%、107.14%、54.21%,甲烷的含量达90.11%;甲烷的产率为2.63 L L~(-1) d~(-1),较AD提高了157.84%.以基质化学能、电能和产生的甲烷来计算总能量回收效率,其中AD为73.51%;加电0.4 V、0.6 V、0.8 V时分别为93.44%、88.99%、93.41%.综合脂肪酸降解、甲烷产生及能量回收情况,确定外加0.8 V为最优条件.循环伏安扫描分析发现,与AD相比,MEC-AD在-0.3V处存在明显产甲烷还原峰.高通量测序结果显示,MEC-AD中阳极优势菌群为Methanosaeta sp.和Geobacter sp.,其相对丰度比分别为36.43%和13.35%;而AD中相应比例仅为24.46%和0.99%.由此可知MEC-AD中可能存在直接的种间电子传递(DIET)产甲烷途径,该途径是甲烷含量和产量提升的重要原因.综上,以微生物电解池辅助厌氧消化能有效促进底物降解,且获得高纯度、高产量的甲烷,具有良好的应用前景.  相似文献   

12.
四环素类抗生素和铜复合污染对猪粪厌氧消化的影响   总被引:1,自引:0,他引:1  
兽用抗生素和矿物元素添加剂可起到预防动物疾病、促进动物生长、提高饲料转化率等作用,因此被广泛应用于畜禽养殖业。本研究以猪粪中温厌氧消化为研究目标,采用全自动甲烷潜势测试系统,考察了一定浓度的四环素(TC:30 mg·kg~(-1)dry weight,DW)、土霉素(OTC:50 mg·kg~(-1)DW)和金霉素(CTC:15 mg·kg~(-1)DW)对厌氧累积产甲烷量和日产甲烷速率的影响。结果表明,TC、OTC和CTC对猪粪中温厌氧消化累积产甲烷量和日产甲烷速率均有促进作用(累积产甲烷总量提高比例分别为7.9%、0.4%和5.4%)。另外,采用超高效液相色谱-四极杆串联质谱对猪粪厌氧消化前后样品中四环素类抗生素及其代谢产物进行了分析。结果表明,液相中的四环素类抗生素在猪粪厌氧消化过程中得到了明显的去除,去除率达到90%~100%;而固相中只有金霉素和差向异构金霉素有明显的去除效果,去除率分别为41.69%和41.58%。采用Tessier连续提取法对猪粪厌氧消化前后样品中5种形态的铜包括可交换态、碳酸盐结合态、铁锰氧化结合态、有机物结合态、残渣态进行了分析,结果表明,猪粪厌氧消化后,可交换态、碳酸盐结合态和铁锰结合态的铜浓度比厌氧消化前分别降低了1%~9%、0.1%~3%、12%~19%,而有机态和残渣态的铜浓度却在厌氧消化后分别增加了15%~35%、1%~2%。厌氧消化后,70%~80%的铜都是以有机铜的形态存在。铜逐渐从不稳定态转化为相对稳定的有机态和残渣态铜,因此,厌氧消化过程使铜从可生物利用态转变为不可生物利用态,趋于稳定化。  相似文献   

13.
蝇蛆生物转化餐厨垃圾的效能评估   总被引:2,自引:0,他引:2  
餐厨垃圾具有资源性和危害性.利用家蝇幼虫(蝇蛆)的食腐性以及生命周期短特性研究餐厨垃圾处理,探究最佳蝇蛆接种量,而后分析此接种量下处理前后堆体的理化指标,并对蝇蛆进行营养评价.结果表明,蝇蛆处理餐厨垃圾的最佳接种量约为13 300只/kg,此接种量下餐厨垃圾的减量可达55%,减量指标为13.8;处理后堆体的含水量、有机质、全氮、全磷、全钾总量分别下降71.1%、63.9%、75.4%、8.13%、5.3%,碳氮比和p H分别为31.2、8.43,均满足好氧堆肥所需的初始条件;蝇蛆生物转化餐厨垃圾的平均产率为26.4%,转化效率达79.7%;所得干蛆的蛋白质含量接近50%,综合营养价值高于国产鱼粉及豆饼;多烯脂肪酸含量(亚油酸、亚麻酸等)超过智利鱼粉,深加工潜力大.上述结果表明蝇蛆生物转化餐厨垃圾效能显著,具有较好发展前景.  相似文献   

14.
低浓度溶解氧下猪粪固体有机物水解产酸研究   总被引:2,自引:0,他引:2  
本文以猪粪为发酵原料,通过批式实验研究不同溶解氧(DO)浓度(0—0.26 mg.L-1)、发酵时间(3—12 d)和挥发性固体(VS)浓度(11.14—111.35 g.L-1)对猪粪固体水解酸化过程的影响,确定了低DO浓度下固体有机物优化水解产酸工艺条件:中温35℃,初始VS浓度37.11 g.L-1,初期的DO浓度0.1—0.26 mg.L-1.在此条件下,发酵时间3 d,DO浓度下降到0.10 mg.L-1以下.猪粪发酵液pH值由7.45±0.10降低到5.86±0.17,VS降解率(25.67±1.20)%,挥发性脂肪酸(VFA)中乙酸(3895±91)mg.L-1、丙酸(2313±82)mg.L-1、正丁酸(1361±17)mg.L-1、正戊酸(540±11)mg.L-1.优化条件下的猪粪水解酸化液进行厌氧产甲烷发酵,发酵10 d内产气停止,低溶解氧水解酸化和厌氧产甲烷发酵累计时间仅为13 d,甲烷体积分数(69.5±0.2)%,VS产气率为(0.282±0.011)L CH.4g-1VS.研究结果表明,适当延长发酵时间能够增加VFA中乙酸的含量,初始VS浓度差异对发酵液VFA浓度和VS降解率的影响较显著,低溶解氧能够促进猪粪固体有机物水解过程.  相似文献   

15.
挥发性脂肪酸(volatile fatty acid,VFA)降解是厌氧消化的限速步骤,其产甲烷效率取决于微生物的种间电子传递能力.种间直接电子传递(direct interspecies electron transfer,DIET)克服了种间氢/甲酸电子转移的热力学限制,可加速VFA降解产甲烷过程.基于微生物利用自身结构(如纳米导线、细胞色素c及其他蛋白组分等)进行DIET的原理,综述了外源添加导电材料对VFA厌氧消化产甲烷过程中DIET的强化效果及作用机制.碳材料和铁材料均能有效提高厌氧消化体系的甲烷产率,并缩短VFA的降解时间;碳材料通过替代纳米导线或富集具有DIET能力的微生物(如地杆菌)来实现DIET的强化.但不同类型铁材料的DIET强化机制存在着差异:磁铁矿的作用包括替代细胞色素c、诱导与DIET相关蛋白质的表达以及富集DIET微生物等;赤铁矿和针铁矿也可富集DIET微生物,此外赤铁矿还可促进细胞聚集体的形成及稳定,使DIET的进行更加有利.未来应进一步探究地杆菌以外微生物的DIET能力及作用机制,并优化导电材料强化厌氧消化产甲烷的工艺,以加速有机废弃物的高效资源化处理进程.(图2表3参59)  相似文献   

16.
垃圾填埋场是重要的甲烷释放源,其有效管理是减缓温室效应的重要环节.通过硝化渗滤液回灌模拟垃圾填埋柱,研究硝化渗滤液在新鲜垃圾和老龄垃圾填埋柱中的脱氮及对垃圾稳定化和产甲烷的影响.结果表明,回灌的硝化渗滤液在不同填埋龄垃圾柱中,均可实现总氧化态氮(Total oxidation nitroge,TON)完全还原.当回灌TON负荷分别达到14.19 g t-1(TS)d-1和10.45 g t-1(TS)d-1时,新、老垃圾柱中甲烷产生开始受到抑制.实验后期,回灌TON负荷增至38.78 g t-1(TS)d-1和30.62 g t-1(TS)d-1时,新、老垃圾填埋柱产甲烷相对抑制率分别达54.10%和95.77%.同时,回灌反硝化对新、老垃圾柱中垃圾降解贡献率(Rd)分别达85%和93%,能有效促进垃圾稳定.  相似文献   

17.
为了提高能源回收效率,采用大米、土豆、生菜、瘦肉、花生油和榕树叶作为实验原料,模拟有机垃圾中普遍存在的淀粉、膳食纤维、蛋白质、脂肪和木质纤维类成分,进行厌氧发酵产氢以及对其剩余物厌氧发酵产甲烷.结果表明.在厌氧发酵产氢阶段,整个过程没有甲烷生成,大米、土豆、生菜、瘦肉、花生油和榕树叶的氢气产率分别为125、103、35、0、5和0 mL g-1(VS),能源回收效率分别为7.9%、6.8%、1.9%、0、0.1%和0.大米、土豆和生菜的氢气浓度分别为34%~59%、41%~56%和37%~70%,整个产氢阶段没有甲烷生成.在厌氧发酵产甲烷阶段,上述原料的甲烷产率分别为232、237、148、278、866和50 mL g-1(VS),生物气中甲烷含量分别为42%~70%、57%~71%、73%~77%、59%~73%、68%~80%和54%~74%.厌氧发酵联产氢气和甲烷整个过程上述原料的能源回收效率分别为56.3%、58.4%、28.8%、39.2%、81.2%和8.8%,总COD去除率分别为72.30%、81.70%、32.63%、47.59%、97.46%和11.29%.图4表5参35  相似文献   

18.
稻草与猪粪不同比例混合的厌氧消化特性   总被引:2,自引:0,他引:2  
在中温(35℃)条件下,应用批式单相厌氧消化技术对稻草与猪粪不同比例混合厌氧消化特性进行了研究.结果表明;稻草与猪粪的VS比为3:1时,日产气量比较稳定,累积产气量达12080 ml,较稻草与猪粪VS比为1:1和1:3的处理分别高11.80%和16.08%;混合物中猪粪比重愈高所得沼气中甲烷含量愈高,最高达68.75%,消化液中乙酸和丁酸的含量也愈高,混合物中稻草比重愈高消化液中丙酸的含量也愈高,愈有利于发酵物的水解酸化.  相似文献   

19.
以蔬菜废弃物为原料的厌氧消化过程产甲烷能力下降时,通过添加微量元素可使其恢复稳定状态,因此研究微量元素对厌氧消化系统微生物结构的影响对优化系统性能具有重要意义.采用70 L厌氧发酵罐,有效体积59.5 L,在中温35℃条件下进行蔬菜废弃物厌氧消化的连续冲击负荷试验,根据CH_4含量变化规律,及时添加微量元素(Fe、Co、Ni)促进厌氧消化过程.样品采用16SrRNA基因扩增和MiSeq测序技术分析微生物群落的结构.结果表明,微量元素对细菌群落的影响主要作用于拟杆菌门、厚壁菌门及螺旋菌门.在属水平上,第一次微量元素的添加诱导了拟杆菌门中的VadinBC27 wastewater-sludge的增加,相对丰度从54.1%升至68%,降低了厚壁菌门中Erysipelotrichaceae UGG-004以及螺旋菌门中Sphaerochaeta.第二次微量元素的添加,主要降低了螺旋菌门中的Sphaerochaeta,相对丰度从11.4%到4.4%,以及诱导拟杆菌门中Bacteroides的产生,提高了原料利用率,降低了酸化的抑制作用.微量元素对蔬菜废弃物厌氧消化过程中产甲烷菌群落的影响主要在甲基营养型Candidatus Methanoplasma、甲烷鬃菌属为主导的乙酸营养型.当挥发性脂肪酸含量较高时,Candidatus Methanoplasma占主导地位,微量元素添加后则会诱导甲烷鬃菌为主导的乙酸营养型甲烷菌的产生,相对丰度从2.3%增至80%促进挥发性脂肪酸的消耗转化.本研究表明,微量元素的添加对于微生物群落结构的改变显著,促进厌氧消化过程水解酸化与甲烷化的平衡,从而稳定运行.  相似文献   

20.
为了提高能源回收效率,采用大米、土豆、生菜、瘦肉、花生油和榕树叶作为实验原料,模拟有机垃圾中普遍存在的淀粉、膳食纤维、蛋白质、脂肪和木质纤维类成分,进行厌氧发酵产氢以及对其剩余物厌氧发酵产甲烷. 结果表明,在厌氧发酵产氢阶段,整个过程没有甲烷生成,大米、土豆、生菜、瘦肉、花生油和榕树叶的氢气产率分别为125、103、35、0、5和0 mL g^-1(VS),能源回收效率分别为7.9%、6.8%、1.9%、0、0.1%和0. 大米、土豆和生菜的氢气浓度分别为34%-59%、41%-56%和37%-70%,整个产氢阶段没有甲烷生成. 在厌氧发酵产甲烷阶段,上述原料的甲烷产率分别为232、237、148、278、866和50 mL g^-1(VS),生物气中甲烷含量分别为42%-70%、57%-71%、73%-77%、59%-73%、68%-80%和54%-74%. 厌氧发酵联产氢气和甲烷整个过程上述原料的能源回收效率分别为56.3%、58.4%、28.8%、39.2%、81.2%和8.8%,总COD去除率分别为72.30%、81.70%、32.63%、47.59%、97.46%和11.29%. 图4 表5 参35  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号