共查询到20条相似文献,搜索用时 0 毫秒
1.
Hegyi Gergely Jenni-Eiermann Susanne Boross Nóra Garamszegi László Zsolt Laczi Miklós Kötél Dóra Krenhardt Katalin Jablonszky Mónika Markó Gábor Nagy Gergely Rosivall Balázs Szász Eszter Török János 《Behavioral ecology and sociobiology》2019,73(6):1-14
Behavioral Ecology and Sociobiology - Cooperation plays a crucial role in primate social life. However, the evolution of large-scale human cooperation from the cognitive fundamentals found in other... 相似文献
2.
Major abiotic disturbance can be an important factor influencing food-web dynamics, particularly in areas impacted by the recent increase in hurricane activity. We present a unique set of data on key food-web processes occurring on 10 small islands for three relatively calm years and then four subsequent years during which two hurricanes passed directly over the study site. Herbivory, as measured by leaf damage, was 3.2 times higher in the year after the first hurricane (2000) than in the previous year and was 1.7 times higher in the year after the second hurricane (2002) than in 2001. The effect of a top predator (the lizard, Anolis sagrei) on herbivory strengthened continuously after the first hurricane and overall was 2.4 times stronger during the disturbance period than before. Overall abundance of lizards was 30% lower during the disturbance period than before, and abundances of web spiders and hymenopteran parasitoids were 66% and 59% lower, respectively. We suggest that increased herbivory observed on all islands was caused, at least in part, by the overall reduction in predation by both lizards and arthropods, whereas magnification of the lizard effect on herbivory was caused by reduced compensatory predation by arthropods. 相似文献
3.
Optimal patch time allocation for time-limited foragers 总被引:1,自引:0,他引:1
Eric Wajnberg Pierre Bernhard Frédéric Hamelin Guy Boivin 《Behavioral ecology and sociobiology》2006,60(1):1-10
The Charnov Marginal Value Theorem (MVT) predicts the optimal foraging duration of animals exploiting patches of resources.
The predictions of this model have been verified for various animal species. However, the model is based on several assumptions
that are likely too simplistic. One of these assumptions is that animals are living forever (i.e., infinite horizon). Using
a simple dynamic programming model, we tested the importance of this assumption by analysing the optimal strategy for time-limited
foragers. We found that, for time-limited foragers, optimal patch residence times should be greater than those predicted from
the classic, static MVT, and the deviation should increase when foragers are approaching the end of their life. These predictions
were verified for females of the parasitoid Anaphes victus (Hymenoptera: Mymaridae) exploiting egg patches of its host, the carrot weevil Listronotus oregonensis (Coleoptera: Curculionidae). As predicted by the model, females indeed remained for a longer time on host patches when they
approached the end of their life. Experimental results were finally analysed with a Cox regression model to identify the patch-leaving
decision rules females used to behave according to the model’s predictions. 相似文献
4.
D. F. Smith N. C. Bulleid R. Campbell H. W. Higgins F. Rowe D. J. Tranter H. Tranter 《Marine Biology》1979,54(1):49-59
Short-term incubations in seawater containing H14CO3
- or 3H2O in place of the naturally predominant isotopes can yield highly radioactive preparations of living phytoplankton or zooplankton. Subsequent in situ incubation of these labelled organisms with the community from which they were taken results in the rapid transfer of radioisotope to those species which prey upon them. This technique has been employed to map a portion of a marine food web involving demersal zooplankton; experiments were conducted in summer and autumn on a coral reef and in a subtropical estuary. Similar results were obtained from these initial experiments at each study site during both seasons. Prey supplied as zooplankton (124 to 410 m nominal diameter), which consisted mainly of Oithona oculata, was fed upon by zooplankton size classes ranging from 410 to 850 m and containing amphipods, ostracods, cumaceans and polychaetes. In experiments employing labelled phytoplankton as prey a wide size spectrum was used (10 to 106 m) in order to include representative samples of most of the available planktonic autotrophs as estimated by primary production measurements. In two separate experiments, only 7 out of 63 samples evidenced grazing of phytoplankton by demersal zooplankters. In contrast, labelled diatom auxospores, employed in one experiment as they constituted the most numerically abundant species in the water column, were found to be grazed upon in nearly half the samples examined. 相似文献
5.
《Ecological modelling》2005,181(2-3):229-246
Water, sediments, fish and other biota were sampled from fixed stations along bayous in the LaBranche Wetlands of Louisiana as part of an environmental contamination study in 1996 and 1997. In order to understand the biological fate of some of these contaminants, a spotted gar (Lepisosteus oculatus) food-web model was developed from site-specific data and established bioaccumulation modeling assumptions. Based on gut contents analysis, the gar were found to feed on terrestrial arthropods, a variety of small fish, aquatic insects, crayfish and grass shrimp. A Bayesian approach (a hierarchical model and Markov Chain Monte Carlo simulation) was used to estimate the kinetic rate constants of uptake from water, dietary uptake and total elimination for the food-web model using site-specific measurements of naphthalene, phenanthrene, and benzanthracene concentrations, reference literature inputs, and a hierarchical statistical model. This iterative simulation method resulted in a distribution of the parameters for each chemical comprised of the last 3000 values from four separate Markov Chains of length 15,000–25,000 iterations. The posterior parameter values were found to be consistent with rate constants published in the literature for various fish species, and were used to determine distributions of predicted gar PAH concentrations. 相似文献
6.
Jorge M. Mendes Patrícia Cortés de Zea Bermudez José Pereira K. F. Turkman M. J. P. Vasconcelos 《Environmental and Ecological Statistics》2010,17(1):1-28
In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due
to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management,
correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire
sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations
are introduced into the model through model parameters with suitably chosen link functions. The inference on these models
are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods. 相似文献
7.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems. 相似文献
8.
Overholtzer-McLeod KL 《Ecology》2006,87(4):1017-1026
The spatial configuration of habitat patches can profoundly affect a number of ecological interactions, including those between predators and prey. I examined the effects of reef spacing on predator-prey interactions within coral-reef fish assemblages in the Bahamas. Using manipulative field experiments, I determined that reef spacing influences whether and how density-dependent predation occurs. Mortality rates of juveniles of two ecologically dissimilar species (beaugregory damselfish and yellowhead wrasse) were similarly affected by reef spacing; for both species, mortality was density dependent on reef patches that were spatially isolated (separated by 50 m), and density independent on reef patches that were aggregated (separated by 5 m). A subsequent experiment with the damselfish demonstrated that a common resident predator (coney) caused a substantial proportion of the observed mortality, independent of reef spacing. Compared to isolated reefs, aggregated reefs were much more likely to be visited by transient predators (mostly yellowtail snappers), regardless of prey density, and on these reefs, mortality rates approached 100% for both prey species. Transient predators exhibited neither an aggregative response nor a type 3 functional response, and consequently were not the source of density dependence observed on the isolated reefs. These patterns suggest that resident predators caused density-dependent mortality in their prey through type 3 functional responses on all reefs, but on aggregated reefs, this density dependence was overwhelmed by high, density-independent mortality caused by transient predators. Thus, the spatial configuration of reef habitat affected both the magnitude of total predation and the existence of density-dependent mortality. The combined effects of the increasing fragmentation of coral reef habitats at numerous scales and global declines in predatory fish may have important consequences for the regulation of resident fish populations. 相似文献
9.
C. Patrick Doncaster Andrew J. H. Davey Philip M. Dixon 《Environmental and Ecological Statistics》2014,21(2):239-261
Estimation of design power requires knowledge of treatment effect size and error variance, which are often unavailable for ecological studies. In the absence of prior information on these parameters, investigators can compare an alternative to a reference design for the same treatment(s) in terms of its precision at equal sensitivity. This measure of relative performance calculates the fractional error variance allowed of the alternative for it to just match the power of the reference. Although first suggested as a design tool in the 1950s, it has received little analysis and no uptake by environmental scientists or ecologists. We calibrate relative performance against the better known criterion of relative efficiency, in order to reveal its unique advantage in controlling sensitivity when considering the precision of estimates. The two measures differ strongly for designs with low replication. For any given design, relative performance at least doubles with each doubling of effective sample size. We show that relative performance is robustly approximated by the ratio of reference to alternative $\alpha $ quantiles of the $F$ distribution, multiplied by the ratio of alternative to reference effective sample sizes. The proxy is easy to calculate, and consistent with exact measures. Approximate or exact measurement of relative performance serves a useful purpose in enumerating trade-offs between error variance and error degrees of freedom when considering whether to block random variation or to sample from a more or less restricted domain. 相似文献
10.
This paper presents a statistical method for detecting distinct scales of pattern for mosaics of irregular patches, by means of perimeter–area relationships. Krummel et al. (1987) were the first to develop a method for detecting different scaling domains in a landscape of irregular patches, but this method requires investigator judgment and is not completely satisfying. Grossi et al. (2001) suggested a modification of Krummel's method in order to detect objectively the change points between different scaling domains. Their procedure is based on the selection of the best piecewise linear regression model using a set of statistical tests. Even though the change points were estimated, the null distributions used for testing purposes were those appropriate for known change points. The present paper investigates the effect that estimating the change points has on the underlying distribution theory. The procedure we suggest is based on the selection of the best piecewise linear regression model using a likelihood ratio (LR) test. Each segment of the piecewise linear model corresponds to a fractal domain. Breakpoints between different segments are unknown, so the piecewise linear models are non-linear. In this case, the frequency distribution of the LR statistic cannot be approximated by a chi-squared distribution. Instead, Monte Carlo simulation is used to obtain an empirical null distribution of the LR statistic. The suggested method is applied to three patch types (CORINE biotopes) located in the Val Baganza watershed of Italy. 相似文献
11.
Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort. 相似文献
12.
13.
{en} Over the past decades, much research has focused on understanding the critical factors for marine extinctions with the aim of preventing further species losses in the oceans. Although conservation and management strategies are enabling several species and populations to recover, others remain at low abundance levels or continue to decline. To understand these discrepancies, we used a published database on abundance trends of 137 populations of marine mammals worldwide and compiled data on 28 potentially critical factors for recovery. We then applied random forests and additive mixed models to determine which intrinsic and extrinsic factors are critical for the recovery of marine mammals. A mix of life‐history characteristics, ecological traits, phylogenetic relatedness, population size, geographic range, human impacts, and management efforts explained why populations recovered or not. Consistently, species with lower age at maturity and intermediate habitat area were more likely to recover, which is consistent with life‐history and ecological theory. Body size, trophic level, social interactions, dominant habitat, ocean basin, and habitat disturbance also explained some differences in recovery patterns. Overall, a variety of intrinsic and extrinsic factors were important for species’ recovery, pointing to cumulative effects. Our results provide insight for improving conservation and management strategies to enhance recoveries in the future. 相似文献
14.
15.
16.
Pringle RM 《Ecology》2008,89(1):26-33
Ecologists increasingly recognize the ability of certain species to influence ecological processes by engineering the physical environment, but efforts to develop a predictive understanding of this phenomenon are in their early stages. While many believe that the landscape-scale effects of ecosystem engineers will be to increase habitat diversity and therefore the abundance and richness of other species, few generalities exist about the effects of engineering at the scale of the engineered patch. According to one hypothesis, activities that increase structural habitat complexity within engineered patches will have positive effects on the abundance or diversity of other organisms. Here I show that, by damaging trees and increasing their structural complexity, browsing elephants create refuges used by a common arboreal lizard. Observational surveys and a lizard transplant experiment revealed that lizards preferentially occupy trees with real or simulated elephant damage. A second experiment showed that lizards vacate trees when elephant-engineered refuges are removed. Furthermore, local lizard densities increased with (and may be constrained by) local densities of elephant-damaged trees. This facilitative effect of elephants upon lizards via patch-scale habitat modification runs contrary to previously documented negative effects of the entire ungulate guild on lizards at the landscape scale, suggesting that net indirect effects of large herbivores comprise opposing trophic and engineering interactions operating at different spatial scales. Such powerful megaherbivore-initiated interactions suggest that anthropogenic changes in large-mammal densities will have important cascading consequences for ecological communities. 相似文献
17.
James H. Matis Thomas R. Kiffe Timothy I. Matis John A. Jackman William E. Grant Harvir Singh 《Ecological modelling》2008
This paper extends the application of the cumulative size based mechanistic model, which has previously been shown to describe diverse aphid population size data well. The mechanistic model is reviewed with a focus on the explanatory role of the birth and death rate formulation. An analysis of two data sets, one on the mustard aphid and the other on the pecan aphid, indicates that multiple linear regression equations based on the estimated birth and death rate parameters alone account for nearly all (R2 > 0.95) of the variability in two key population attributes, namely the peak count and the cumulative density. This indicates that population size variables may be projected directly from the growth rate parameters using linear equations. Such linear relationships based on the birth and death rate parameters are shown to hold also for certain generalized mechanistic models for which the analytical solution is not available. The birth and death rate coefficients, therefore, constitute a new succinct set of variables that could be included in the predictive modeling of aphid populations, as well as other insect and animal populations with local collapse which follow similar growth dynamics. 相似文献
18.
19.
E. Wajnberg T. S. Hoffmeister P. Coquillard 《Behavioral ecology and sociobiology》2013,67(12):2053-2063
Several optimisation models, like the marginal value theorem (MVT), have been proposed to predict the optimal time foraging animals should remain on patches of resources. These models do not clearly indicate, however, how animals can follow the corresponding predictions. Hence, several proximate patch-leaving decision rules have been proposed. Most if not all of these are based on the animals’ motivation to remain on the patches, but the real behaviours involved in such motivation actually still remain to be identified. Since animals are usually exploiting patches of resources by walking, we developed a model simulating the intra-patch movement decisions of time-limited animals exploiting resources distributed in delimited patches in environments with different resource abundances and distributions. The values of the model parameters were optimised in the different environments by means of a genetic algorithm. Results indicate that simple modifications of the walking pattern of the foraging animals when resources are discovered can lead to patch residence times that appear consistent with the predictions of the MVT. These results provide a more concrete understanding of the optimal patch-leaving decision rules animals should adopt in different environments. 相似文献
20.
We introduce a new index for measuring perpendicularity of animal movements with respect to a boundary (e.g., a habitat patch edge), and provide a computer algorithm for its calculation. Our index, η, improves on an approach that measures perpendicularity with respect to a fixed boundary direction. This is because η accounts for moment-to-moment trajectories relative to nearest-neighbor boundary attributes at the scale of an animal's movement. Our algorithm prp calculates η efficiently and accurately with both synthetic data and large telemetry datasets. In addition, we have included routines in prp which account for scenarios inherently problematic to perpendicularity estimators. 相似文献