首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ecological modelling》2003,162(3):247-258
We assessed how non-linear biological responses to environmental noise, or “noise filtering”, impact the spectra of density-dependent population dynamics, and the correlation between noise and population dynamics. The noise was assumed to affect population growth rate in a discrete-time population model by Hassell [J. Anim. Ecol. 44 (1975) 283–295] where the population growth rate was linked to the environment with an optimum type filter. When compared to unfiltered noise, the filtered noise can distort the stationary distribution of population values. The optimum type filter can make cyclic population dynamics more regular and low population values can become more frequent or rare depending on the strength of density dependence. Filtering can cause blue shifted and red shifted population dynamics and determine the strength of correlation between environmental noise and population size. In most cases, optimum type filtering makes linear correlation between population dynamics and noise weaker. The filter effect on population spectra and noise versus population correlation is sensitive to changes in population model parameters, the location where noise hits the filter, and noise colour.  相似文献   

2.
Behavioral Ecology and Sociobiology - Individual animals across all taxa differ consistently in behaviour, i.e. they show personality traits. This inter-individual variability has significant...  相似文献   

3.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

4.
Previous work on tropical sponge assemblages has provided strong evidence that sponges coexist on coral reefs through a diversity of positive and negative associations; however, the majority of this work has focused on Caribbean coral reefs. Here, we investigate the intra-phyletic spatial associations between the 20 most abundant sponge species at two sites experiencing different environmental regimes in the Wakatobi National Marine Park, Indonesia. We used a Monte Carlo simulation approach to compare the number of spatial associations between each species pair to that expected if species distribution patterns were non-associative (i.e. random). We found that sponges were predominately randomly distributed at the high coral cover site, whereas most sponges were negatively associated with other sponges at the sedimented, low coral cover site. We also found differences between distribution patterns for specific species at the two sites; a number of species that showed a random distribution pattern at the high coral cover site had negative association patterns at the low coral cover site. Our research supports recent ecological studies suggesting that interactions between species are unlikely to be homogenously distributed, as we found that some sponge species interactions differed depending on the environmental regimes in which they were found; this suggests that species interactions may be spatially variable. Finally, our results contrast with studies from elsewhere, as the sponge assemblages at these two sites in the Wakatobi appear to be dominated by negative associations and random distribution patterns rather than widespread competition.  相似文献   

5.
Crown fire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (CFD) and can be used to model fire in heterogeneous crown fuels. However, the potential impacts of variability in crown fuels on fire behavior have not yet been explored. In this study we describe a new model, FUEL3D, which incorporates the pipe model theory (PMT) and a simple 3D recursive branching approach to model the distribution of fuel within individual tree crowns. FUEL3D uses forest inventory data as inputs, and stochastically retains geometric variability observed in field data. We investigate the effects of crown fuel heterogeneity on fire behavior with a CFD fire model by simulating fire under a homogeneous tree crown and a heterogeneous tree crown modeled with FUEL3D, using two different levels of surface fire intensity. Model output is used to estimate the probability of tree mortality, linking fire behavior and fire effects at the scale of an individual tree. We discovered that variability within a tree crown altered the timing, magnitude and dynamics of how fire burned through the crown; effects varied with surface fire intensity. In the lower surface fire intensity case, the heterogeneous tree crown barely ignited and would likely survive, while the homogeneous tree had nearly 80% fuel consumption and an order of magnitude difference in total net radiative heat transfer. In the higher surface fire intensity case, both cases burned readily. Differences for the homogeneous tree between the two surface fire intensity cases were minimal but were dramatic for the heterogeneous tree. These results suggest that heterogeneity within the crown causes more conditional, threshold-like interactions with fire. We conclude with discussion of implications for fire behavior modeling and fire ecology.  相似文献   

6.
Rudolf VH 《Ecology》2007,88(11):2697-2705
Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.  相似文献   

7.
Dispersal can strongly affect the spatiotemporal dynamics of a species (its spread, spatial distribution and persistence). We investigated how two dispersal behaviours, namely prey evasion (PE) and predator pursuit (PP), affect the dynamics of a predator-prey system. PE portrays the tendency of prey avoiding predators by dispersing into adjacent patches with fewer predators, while PP describes the tendency of predators to pursue the prey by moving into patches with more prey. Based on the Beddington predation model, a spatially explicit metapopulation model was built to incorporate PE and PP. Numerical simulations were run to investigate the effects of PE and PP on the rate of spread, spatial synchrony and the persistence of populations. Results show that both PE and PP can alter spatial synchrony although PP has a weaker desynchronising effect than PE. The predator-prey system without PE and PP expanded in circular waves. The effect of PE can push the prey to distribute in a circular ring front, whereas the effect of PP can change the circular waves to anisotropic expansion. Furthermore, weak PE and PP can accelerate the spread of prey while strong and disproportionate intensities slow down the range expansion. The effects of PE and PP further enhance the population size, break down the spatial synchrony and promote the persistence of populations.  相似文献   

8.
Phytoplankton populations are concentrated in surface microlayer waters of the York River and Mobjack Bay, Virginia, USA. The degree of vertical heterogeneity was variable and seemed most dependent on weather conditions (vertical mixing) and total phytoplankton cell densities. Vertical stratification also exhibited some taxocoenotic dependency. Structurally, the phytoplankton communities of the surface microlayer were less diverse than subsurface communities. In general, values of informational diversity (H'), evenness (J), and richness (S and r) are lowest in the surface microlayer and increase with depth (to 3.0 m). Mechanisms which structure and maintain vertical heterogeneity are discussed.This work was supported in part by funds from the National Science Foundation Research Applied to National Needs Program grants to the Virginia Institute of Marine Science and the Chesapeake Research Consortium.Contribution No. 791 of the Virginia Institute of Marine Science, and Contribution No. 62 of the South Carolina Marine Resources Center.  相似文献   

9.
10.
A unique type of integumental formation is described for several members of the copepod family Pontellidae. This surface attachment structure (SAS) consists of a mass of fine setules arranged in two semicircles on a flattened area of the anterodorsal surface of the cephalosome. Using transmission electron microscopy, the SAS was shown to be continous with the cuticle and not linked to chemo- or mechanosensory cells; its function is purely mechanical. This structure is probably an energy-saving means for these large and heavy neustonts to stay attached to the surface film. The SAS is species-specific and may thus be of potential importance to the systematics and phylogeny of the Pontellidae, in the same manner as integumental pores and sensilla, which form patterns characteristic of several copepod families and genera.  相似文献   

11.
Populations of reintroduced California condors (Gymnogyps californianus) develop complex social structures and dynamics to maintain stable group cohesion, and birds that do not successfully integrate into group hierarchies have highly impaired survivability. Consequently, improved understanding of condor socioecology is needed to inform conservation management strategies. We report on the dominance structure of free-ranging condors and identify the causes and consequences of rank in condor populations by matching social status with the behavioral and physical correlates of individual birds. We characterized the hierarchical social structure of wild condor populations as mildly linear, despotic, and dynamic. Condor social groups were not egalitarian and dominance hierarchies regulated competitive access to food resources. Absence of kin-based social groups also indicated that condor social structure is individualistic. Agonistic interactions among condors were strongly unidirectional, but the overall linearity and steepness of their hierarchies was low. Although one aggressive male maintained the highest dominance rank across the 3-year observation period, there was considerable fluidity in social status among condors within middle and lower rank orders. Older condors were more dominant than younger birds and younger males supplanted older females over time to achieve higher status. Dominance rank did not predict the amount of time that a bird spent feeding at a carcass or the frequency that a bird was interrupted while feeding. Thus, younger, less dominant birds are able to obtain sufficient nutrition in wild social populations.  相似文献   

12.
Schmitt RJ  Holbrook SJ 《Ecology》2007,88(5):1241-1249
The importance of density dependence in natural communities continues to spark much debate because it is fundamental to population regulation. We used temporal manipulations of density to explore potentially stabilizing density dependence in early survivorship among six local populations of a tropical damselfish (Dascyllus flavicaudus). Specifically, we tested the premise that spatial heterogeneity in the strength of temporal density dependence would reflect variation in density of predators, the agent of mortality. Our field manipulations revealed that mortality among successive cohorts of young fishes was density dependent at each reef, but that its strength varied by approximately 1.5 orders of magnitude. This spatial heterogeneity was well predicted by variation among the six reefs in the density of predatory fishes that consume juvenile damselfishes. Because density dependence arose from competition for enemy-free space within a shelter coral, the mortality consequence of the competition depended on the neighborhood density of predators. Thus, the scale of heterogeneity in the density dependence largely reflected attributes of the environment that shaped the local abundance of predators. These results have important implications for how ecologists explore regulatory processes in nature. Failure to account for spatial variation could frequently yield misleading conclusions regarding density dependence as a stabilizing process, obscure underlying mechanisms influencing its strength, and provide no insight into the spatial scale of the heterogeneity. Further, models of population dynamics will be improved when experimental approaches better estimate the magnitude and causes of variation in strength of stabilizing density dependence.  相似文献   

13.
Shorebird abundance and spatial distribution of larval trematodes in the New Zealand mudsnail, Zeacumantus subcarinatus, were investigated in soft-sediment intertidal bays within Otago Harbour, South Island, New Zealand. In a small-scale study, recruitment of trematodes to caged sentinel snails and the prevalence of infection in free-living snails were examined across a grid of fifteen 50×25 m plots arranged in a representative area of an intertidal bay, in relation to within-plot shorebird abundance (definitive hosts) and tidal height. In a large-scale study, natural spatial variation of larval trematodes in Z. subcarinatus was examined across 12 bays in relation to local abundance of shorebirds. Our results revealed that trematode prevalence in snails was positively correlated with bird abundance across bays (R 2=0.503, P=0.006). In contrast, despite a difference in bird abundance between tidal heights, there was no evidence that trematode prevalence reflected the spatial distribution of birds in the small-scale study, suggesting that factors related to differences in submersion time may override the differential input of trematode eggs from birds.  相似文献   

14.
J. A. Nott 《Marine Biology》1969,2(3):248-251
The surface morphology of the antennular attachment disc of the cypris larva of Balanus balanoides has been investigated by scanning electron microscopy, and its function is considered in the context of settlent behaviour. It is concluded that the attachment organ acts as an adhesive pad for temporary attachment while the larva explores the substratum. The surface of the disc is covered with villi, which could retain an adhesive substance thought to be produced by the antennular glands. The open-ended hair of the axial sense organ on the disc is shown.  相似文献   

15.
Summary We used field surveys, field experiments and experiments in artificial pools to study the effects of variation in sex ratio and density on mating dynamics of a stream water strider, Aquarius remigis. Our field survey documented the existence of hot spots, sites of higher than average total gerrid density, a male-biased sex ratio, and higher than average female mating activity. Female gerrids frequently changed sites, usually moving upstream, perhaps to spread their eggs among many sites. Male gerrids showed two movement strategies: some males frequently changed sites, while other males were stationary at hot spots. Surprisingly, smaller males tended to be stationary at hot spots. A field manipulation of the availability of refuges for females to avoid harassment by males supported the notion that males prefer hot spots because they are sites where a scarcity of refuge for females makes it relatively easy for males to intercept females. Experiments in plastic pools compared sites with 20 males: 5 females (simulating hot spots) to pools with 5 males: 5 females. The rate of male harassment of females was higher in 20:5 pools as compared to 5:5 pools. In response to increased male harassment, females reduced their activity on the water and increased their time spent out of the water and thus unable to forage. Males showed a large male mating advantage (LMMA) in 5:5 pools, but, surprisingly, not in 20: 5 pools. This pattern can explain the field observation that small males prefer hot spots. A behavioral mechanism that can explain the LMMA is as follows. Mating occurs when males overcome female resistance. Larger males have a mating advantage over smaller males if females resist heavily. Increased harassment (e.g., in 20:5 pools as compared to 5:5 pools) might result in reduced female resistance to males and thus a reduced LMMA. Females also showed some non-random mating by size that might reflect an interplay between male preference for large females and the avoidance of males by large females. Correspondence to: A. Sih  相似文献   

16.
The nitrogen emission from household food consumption (NEHFC) has played a vital role in sustainability development. Recent changes in household dietary have significantly accelerated reactive nitrogen emissions in China. However, the spatial patterns and dynamics of these flows between urban and rural areas remain unclear. Based on material flow and spatial-temporal analysis, our study investigated the patterns of Chinese urban-rural NEHFC during 1993–2015. Increasingly apparent regional disparities were found in both the spatial patterns of urban-rural NEHFC during the study period. Notably, the spatial autocorrelation of urban NEHFC demonstrated a ‘U’ type, compared with a recent decreasing Moran’s I index of rural NEHFC. Moreover, the regional spatial-temporal variation of per capita urban NEHFC exhibited ‘South (High)-North (Low)-Middle (Fast)’ trend. By contrast, the hotspot of per capita rural NEHFC mainly concentrated in South-eastern China with a distinct regional changing of ‘Middle-east (Fast) & west (Slow).’ The Social-Economic and Regional-Development Index were far more critical than the Natural-Geographic Index to the spatial-temporal variation of per capita urban NEHFC, whereas the rural NEHFC was driven by the combined actions of all the three indexes. Our study highlighted the necessity of ‘Location-Suitable’ and ‘Urban-rural recycling’ nitrogen management strategies for reducing the risk of NEHFC in China.  相似文献   

17.
Environmental and Ecological Statistics - Using the Suzhou-Wuxi-Changzhou (referred to as Su-Xi-Chang) region as a case study, this work applied an Exploratory Spatial Data Analysis model to study...  相似文献   

18.
19.
Summary. How warning colouration first appeared remains a disputed question in evolutionary biology. A density-dependent transition from crypsis to aposematism that occurs during phase change in the desert locust (Schistocerca gregaria) provides insight into the conditions under which acquiring warning colouration is adaptive. When crowded for only a few hours, solitarious locusts cease avoiding each other and actively aggregate. This occurs well before they acquire warning colouration. We show that accompanying this early behavioural gregarisation is a remarkable shift in feeding behaviour, in which solitarious insects switch from being deterred by a toxic plant alkaloid to feeding avidly upon foods containing it. A computer simulation shows how crypsis ceases to be effective as an anti-predator strategy when solitarious locusts are crowded, how chemical defence becomes essential as conspicuousness increases with local density, and how warning colouration becomes advantageous under these conditions. These findings provide empirical evidence for an adaptive route for the change from a cryptic edible phenotype to a brightly coloured toxic one.  相似文献   

20.
A dynamic and heterogeneous species abundance model generating the lognormal species abundance distribution is fitted to time series of species data from an assemblage of stoneflies and mayflies (Plecoptera and Ephemeroptera) of an aquatic insect community collected over a period of 15 years. In each year except one, we analyze 5 parallel samples taken at the same time of the season giving information about the over-dispersion in the sampling relative to the Poisson distribution. Results are derived from a correlation analysis, where the correlation in the bivariate normal distribution of log abundance is used as measurement of similarity between communities. The analysis enables decomposition of the variance of the lognormal species abundance distribution into three components due to heterogeneity among species, stochastic dynamics driven by environmental noise, and over-dispersion in sampling, accounting for 62.9, 30.6 and 6.5% of the total variance, respectively. Corrected for sampling the heterogeneity and stochastic components accordingly account for 67.3 and 32.7% of the among species variance in log abundance. By using this method, it is possible to disentangle the effect of heterogeneity and stochastic dynamics by quantifying these components and correctly remove sampling effects on the observed species abundance distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号