首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for delta2H of different TCEs ranged between +466.9 per thousand and +681.9 per thousand, for delta13C between -31.57 per thousand and -27.37 per thousand, and for delta37Cl between -3.19 per thousand and +3.90 per thousand. In the case of the TCAs, the isotope ratio for delta2H ranged between -23.1 per thousand and +15.1 per thousand, for delta13C between -27.39 per thousand and -25.84 per thousand, and for delta37Cl between -3.54 per thousand and +1.39 per thousand. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of delta2H in manufactured TCEs (between +466.9 per thousand and +681.9 per thousand), the dechlorinated products had a very depleted delta2H (less than -300 per thousand). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/1H analyses with 13C/12C and 37Cl/35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.  相似文献   

2.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

3.
Chloromethane (CH(3)Cl) is the most abundant halocarbon in the atmosphere. Although largely of natural origin it is responsible for around 17% of chlorine-catalysed ozone destruction. Sources identified to date include biomass burning, oceanic emissions, wood-rotting fungi, higher plants and most recently tropical ferns. Current estimates reveal a shortfall of around 2 million ty(-1) in sources versus sinks for the halocarbon. It is possible that emissions from green plants have been substantially underestimated. A potentially valuable tool for validating emission flux estimates is comparison of the delta13C value of atmospheric CH(3)Cl with those of CH(3)Cl from the various sources. Here we report delta13C values for CH(3)Cl released by two species of tropical ferns and show that the isotopic signature of CH(3)Cl from pteridophytes like that of CH(3)Cl from higher plants is quite different from that of CH(3)Cl produced by biomass burning, fungi and industry. delta13C values for CH(3)Cl produced by Cyathea smithii and Angiopteris evecta were respectively -72.7 per thousand and -69.3 per thousand representing depletions relative to plant biomass of 42.3 per thousand and 43.4 per thousand. The characteristic isotopic signature of CH(3)Cl released by green plants should help constrain their contribution to the atmospheric burden when reliable delta13C values for all other major sources of CH(3)Cl are obtained and a globally averaged delta13C value for atmospheric CH(3)Cl is available.  相似文献   

4.
Chlorinated ethenes often migrate over extended distances in aquifers and may originate from different sources. The aim of this study was to determine whether stable carbon isotope ratios remain constant during dissolution and transport of chlorinated ethenes and whether the ratios can be used to link plumes to their sources. Detailed depth-discrete delineation of the carbon isotope ratio in a tetrachloroethene (PCE) plume and in a trichloroethene (TCE) plume was done along cross-sections orthogonal to groundwater flow in two sandy aquifers in the Province of Ontario, Canada. At the TCE site, TCE concentrations up to solubility were measured in one high concentration zone close to the bottom of the aquifer from where dense non-aqueous phase liquid (DNAPL) was collected. A laboratory experiment using the DNAPL indicated that only very small carbon isotope fractionation occurs during dissolution of TCE (0.26 per thousand), which is consistent with field observations. At most sampling points, the delta(13)C of dissolved TCE was similar to that of the DNAPL except for a few sampling points at the bottom of the aquifer close to the underlying aquitard. At these points, a (13)C enrichment of up to 2.4 per thousand was observed, which was likely due to biodegradation and possibly preferential diffusion of TCE with (12)C into the aquitard. In contrast to the TCE site, several distinct zones of high concentration were observed at the PCE site and from zones to zone, the delta(13)C values varied substantially from -24.3 per thousand to -33.6 per thousand. Comparison of the delta(13)C values in the high concentration zones made it possible to divide the plume in the three different domains, each probably representing a different episode and location of DNAPL release. The three different zones could still be distinguished 220 m from the DNAPL sources. This demonstrates that carbon isotope ratios can be used to differentiate between different zones in chlorinated ethene plumes and to link plume zones to their sources. In addition, subtle variations in delta(13)C at plume fringes provided insight into mechanisms of plume spreading in transverse vertical direction. These variations were identified because of the high-resolution provided by the monitoring network.  相似文献   

5.
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally <1 mol%), the signature metabolite approach works best at higher toluene concentrations when it is not constrained by detection limits. In wells with lower toluene concentrations (410-640 microg/L), carbon and hydrogen isotopic values were enriched by up to approximately 2 per thousand for delta13C and approximately 70 per thousand for delta2H. This evidence of isotopic fractionation verifies the effects of biodegradation in these low concentration wells where metabolites may already be below detection limits. The combined use of signature metabolite and CSIA data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.  相似文献   

6.
Application of the lead isotope method to differentiate between the local contribution of lead and its portion from long-range transport of air pollution from sources a few thousand kilometers away to the lead pollution level measured in the Oslo area in Norway is discussed. The 206Pb/204Pb ratio is of particular interest in this respect. The results of measurements presented in the paper show that phase-out of lead additives to gasoline in Northern Europe has not phased out the Pb contamination of the environment. The lead isotope method proved very useful to present a contribution of small local sources to the Pb contamination of the air in the Oslo area during the period when the combustion of gasoline, the major source of Pb contamination has been decreasing. Wood combustion is one of these sources in Norway. Lower impact of long-range transport of air pollutants emitted from sources in Eastern and Central Europe and transported with air masses to Scandinavia, during the recent 5 years, can also be traced utilizing isotopic ratios of lead. The application of tree-rings as environmental archives contributed significantly to elucidating the historical Pb pollution.  相似文献   

7.
Zhou J  Wu Y  Zhang J  Kang Q  Liu Z 《Chemosphere》2006,65(2):310-317
Elemental (TOC, TN, C/N) and stable carbon and nitrogen isotopic (delta(13)C, delta(15)N) compositions were measured for surface sediments, three sediment vibrocores, plants, and suspended particulate matter (SPM) collected from salt marsh of the Changjiang Estuary. The purpose of this study is to characterize the sources of organic matter in sediments and to further elucidate the factors influencing the isotope signature in the salt marsh. Our results indicate that organic matter preserved in the sediments is predominantly controlled by the particulate organic matter in the Changjiang Estuary. The in situ contribution of marsh plants carbon to sediment organic matter is clearest in the high marsh, where the low delta(13)C of the plants (-28.1 per thousand) is reflected by a sediment delta(13)C (-24.7 per thousand) lower than values found for the low marsh and bare flat sediments (-23.4 per thousand and -23.0 per thousand, respectively). The effect of grain size on the spatial difference of isotope composition in the marsh sediments is insignificant, based on the observation that similar isotope values are found in different size particles, both for delta(13)C and delta(15)N. Nutrient utilization by plant assimilation, however, shows great impact on the surface sediment delta(15)N composition, due to the isotope fractionation. With extensive plant coverage and the consequent low surface water nitrate concentration, delta(15)N values of the high marsh surface sediments show (15)N enrichment.  相似文献   

8.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

9.
In this study we compared the contribution of individual congeners and the ratios of stable carbon isotopes of two technical toxaphene products. The former US-American product Toxaphene was from 1978 and the East-German product Melipax from 1979. Both technical products showed the known complexity in GC/ECD measurements. Contributions of 24 peaks to each of the technical products were determined by gas chromatography in combination high resolution electron capture negative ion mass spectrometry (GC/ECNI-HRMS). The percentages of the compounds studied in the technical mixtures ranged from approximately 0.05% to approximately 2.5% but showed some individual differences. 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9-1025 or P-62) was identified as a major congener in both mixtures. 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (B8-1413 or P26) and 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (B9-1679 or P-50) were found at similar concentration in both technical products. Identical amounts of Melipax or Toxaphene were combusted to CO2 in an element analyzer and their delta13C values were determined relative to the international standard Vienna PeeDee belemnite (VPDB). The mean delta13C values of both products varied by 2.8% (determined at two different locations) which is roughly one order of magnitude more than the precision obtained in repetitive analyses of the individual products. Thus, both investigated products could be unequivocally distinguished by stable isotope ratio mass spectrometry (IRMS). IRMS analyses may thus be a suitable tool for tracing back toxaphene residues in environmental and food samples to the one or both of the products.  相似文献   

10.
The aim of this study was to conceive a reactive transport model capable of providing quantitative site-specific enrichment factors for fractionation in 13C isotopic content during sorption. As test compound the model treats vanillin, for which the 13C isotopic content at natural abundance at each of the 8 carbon positions can be measured by quantitative 13C nuclear magnetic resonance spectrometry. This technique determines the isotope ratios with a resolution better than ±1‰ (0.1%) at each carbon position. Site-specific isotope fractionations were recorded in chromatography column experiments with silica RP-18 as stationary phase. The one dimensional reactive transport model accounted for the sorption/desorption behavior of 8 individual 13C-isotopomers and one 12C-isotopomer of vanillin and reproduced satisfactorily the bulk (average over the whole compound) fractionation observed during elution. After model calibration, the enrichment factors were fitted for each carbon site where a significant fractionation was recorded. To show the interest of such a transport model for environmental studies, the model, extended to three dimensions, was exploited to simulate reactive transport in an aquifer. These results show that significant 13C isotope fractionation is expected for 4 out of 8 13C-isotopomers in vanillin, and illustrate that bulk isotope ratios measured by conventional compound specific isotope analysis and mass spectrometry would hardly document significant isotope fractionations in vanillin. It is concluded that modeling of site-specific isotope ratios in molecules is a priori feasible and may help to quantify unknown processes in the environment.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) seasonal variation and sources in Ubeji, Ifie, and Egbokodo Creeks of the Niger Delta, Nigeria, were predicted using diagnostic ratios (DRs) of parent PAHs (Phe/Phe + Ant; Flu/Flu + Pyr; BaA/BaA + Chry, and Ind/Ind + BghiP) and principal component analysis (PCA). A total of 222 sediment core samples were collected during the wet (August 2010) and the dry seasons (January 2011). The samples were dried and Soxhlet extracted; sample extracts were fractionated and analyzed by gas chromatography/flame ionization detection (GC/FID) to identify individual PAHs. The diagnostic PAH ratios revealed that PAHs in the sediment cores at the three creeks, in both seasons, mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood-burning, coal combustion, diesel, gasoline-powered vehicular emissions, and petroleum combustion were the dominant contributors of PAHs sources at the sampling location. This study provided information on the origin and sources of PAHs in sediment cores, which may be useful for regulatory actions, environmental quality management, contamination history, and environmental forensic studies.  相似文献   

12.
Products of a power plant flue gas desulfurization scrubber are discharged into a pond as sludge consisting of calcite (initial delta13C 3.2-3.8 per thousand), gypsum (initial delta34S 7.6-8.6 per thousand), and aqueous solution. Reducing conditions exist below a boundary that appears to move vertically as a function of changes in pond water level. Under reducing conditions, bacteria partially reduce aqueous sulfate to low-delta34S sulfide, consuming organic carbon and generating low-delta13C bicarbonate. Under oxidizing conditions, sulfide is converted to sulfate, leading to calcite dissolution, gypsum precipitation, and isotopic re-equilibration of remaining calcite with dissolved bicarbonate near the pond surface. The gypsum has delta34S near 6 per thousand, and calcite has delta13C as low as -1.7 per thousand; the changes from initial values correspond to predictions based on isotopic balance and reaction stoichiometry. The pond largely contains the products of bacterial reduction. After the pond is abandoned, these products may adversely affect attempts to revegetate the site. Future bacterial reduction may be best controlled by dewatering and limiting the supply of organic matter in percolating surface water.  相似文献   

13.
The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS (‘molecular dating’); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo(ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct ‘dating’) studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.  相似文献   

14.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

15.
We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.  相似文献   

16.
《Environmental Forensics》2013,14(3-4):263-278
The existing Nordtest methodology for oil spill Identification has over the past 10 years formed an important "platform" for solving oil spill identification cases both in the Scandinavian countries as well as other countries in Europe, the USA and Canada. " Revision of the Nordtest Methodology for Oil Spill Identification " is a cooperative project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute (Duxbury) in the USA. The goals of the project are: (1) to refine the existing Nordtest methodology into a technically more robust and defensible oil spill identification methodology with focus on determination of quantitative diagnostic indices (ratios) and (2) to adjust the revised Nordtest methodology into guidelines for the European Committee for Standardization (CEN). This paper presents the recommended methodology for the analytical oil spill identification part. The sampling techniques and handling of oil samples and background (reference) samples prior to their arrival at the environmental forensic laboratory is not covered in this paper. The recommended methodology approach is a result of documented analytical improvements and a more quantitative treatment of analytical data from gas chromatographic-flame ionization detector (GC/FID) and gas chromatographic-mass spectrometer methods (GC/MS-SIM) and the operational experiences over past few years among the participating forensic laboratories. The experience and literature in the field of oil exploration and production geochemistry have also played an important role for the recommended methodology. The results from a recent Round Robin test carried out among 12 laboratories using this new methodology are presented in a separate paper in this issue (Faksness et at ., 2002d).  相似文献   

17.
《Environmental Forensics》2002,3(3-4):263-278
The existing Nordtest methodology for oil spill Identification has over the past 10 years formed an important “platform” for solving oil spill identification cases both in the Scandinavian countries as well as other countries in Europe, the USA and Canada. “Revision of the Nordtest Methodology for Oil Spill Identification” is a cooperative project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute (Duxbury) in the USA. The goals of the project are: (1) to refine the existing Nordtest methodology into a technically more robust and defensible oil spill identification methodology with focus on determination of quantitative diagnostic indices (ratios) and (2) to adjust the revised Nordtest methodology into guidelines for the European Committee for Standardization (CEN). This paper presents the recommended methodology for the analytical oil spill identification part. The sampling techniques and handling of oil samples and background (reference) samples prior to their arrival at the environmental forensic laboratory is not covered in this paper. The recommended methodology approach is a result of documented analytical improvements and a more quantitative treatment of analytical data from gas chromatographic-flame ionization detector (GC/FID) and gas chromatographic-mass spectrometer methods (GC/MS-SIM) and the operational experiences over past few years among the participating forensic laboratories. The experience and literature in the field of oil exploration and production geochemistry have also played an important role for the recommended methodology. The results from a recent Round Robin test carried out among 12 laboratories using this new methodology are presented in a separate paper in this issue (8).  相似文献   

18.
Stable isotope analyses (delta(15)N) were used to examine invertebrate tissue enrichment in two North Carolina estuaries with differing amounts of nutrient loading. Bivalves collected from a nutrient sensitive estuary yielded a significant difference in mean nitrogen isotopic composition of tissue (10.4 per thousand+/-0.82; N=66) compared to bivalves collected from a less nutrient sensitive estuary (6.4 per thousand+/-0.63; N=45). Similarly, blue crabs from nutrient sensitive sites had a nitrogen isotopic composition of 11.4 per thousand (+/-1.3, N=77), which was significantly different (P<0.001) than the tissue of less nutrient sensitive blue crabs (9.6 per thousand+/-0.6; N=77). The results showed that an inverse relationship exists between invertebrate tissue enrichment and indicators of water quality across estuarine sites. This study suggests that a relationship may exist between nutrient sources and subsequent energy transfer to estuarine consumers in two North Carolina estuaries.  相似文献   

19.
Stable carbon and hydrogen isotopes can be an efficient means to validate biodegradation of organic contaminants in groundwater since it results in an isotopic fractionation. A prerequisite in applying this method in the field is the proof that other processes decreasing the contaminant concentration are conservative with respect to isotope effects. In this paper we show for carbon isotopes of halogenated hydrocarbon compounds [trichloroethene (TCE), cis-dichloroethene (c-DCE), vinylchloride (VC)] and carbon and hydrogen isotopes of BTEX compounds (benzene, toluene, p-xylene) that no significant fractionation occurs during equilibrium sorption onto activated carbon, lignite coke and lignite. In general, effects were in the range of the reproducibility limit of the analytical instrument (0.5 per thousand for delta13C, and 8 per thousand for delta2H). This observation was made for fractions sorbed of less than 5% to more than 95%. Also for rate-limited sorption of TCE onto activated carbon, no significant fractionation in carbon isotopes could be observed. These findings support the assumption that for these classes of compounds, sorption processes in aquifer systems are conservative with respect to isotope effects.  相似文献   

20.
During Fall 1996, epiphytic lichens were collected along altitudinal sections in two areas of France (the Vosges mountains in the North-East, and the Alps, in Haute-Savoie) in order to verify any geographic distribution of atmospheric metals on a small scale. These lichens have various Pb isotopic compositions (206Pb/207Pb=1.126–1.147) which are correlated with the altitude of sampling. Lichens sampled near valleys display isotopic ratios significantly less radiogenic than those sampled at several hundred to thousand meters of altitude. In the Vosges sections, Pb concentrations and isotopic compositions of lichens may be used to define three zones: (1) valley: Pb-rich and non-radiogenic ratios, (2) transition: low-Pb and intermediate isotopic compositions, (3) mountain: heterogeneous Pb concentrations but more radiogenic and homogeneous Pb isotopic composition. Other metals (Zn, Cu, Cd, As), when normalised one to another, are not fractionated between these zones and display homogeneous relative abundance along the altitudinal sections of both sites. Variation of 206Pb/207Pb ratios with altitude is interpreted in terms of mixing of at least two pollution sources: one being the petrol (leaded and/or unleaded) combustion, and the other being of industrial origin. The latter is characterised by a more radiogenic isotopic composition. The Pb isotopic composition of flue gas residues from different municipal solid waste combustors in the Rhine valley and in other areas of France would suggest that these plants might be an important source of industrial Pb in the atmosphere. If the average industrial Pb in France has a 206Pb/207Pb close to 1.15, between 60 and 80% of the total Pb in lichens from the Rhine valley would come from gasoline combustion, whereas 85–90% of the Pb would have an industrial origin in lichens from higher altitude in the Vosges mountains. Although lichens from the Alps were collected at higher altitude, the percentage of industrial Pb for these lichens would be slightly lower (65%). Major winds and convection winds in the different valleys must then play an important role in term of distribution of atmospheric Pb in function of altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号