首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

3.
阳宗海沉积物中磷的稳定性   总被引:1,自引:0,他引:1  
絮凝剂(FeCl3)治理阳宗海砷污染的过程中,水体中的磷被大量沉积进入底泥,弄清其是否会在环境条件变化后发生反溶形成二次污染对湖泊富营养化防治具有重要意义。通过模拟实验模拟泥-水界面pH变化、物理扰动和微生物活动的变化,旨在分析这些环境因子变化对沉积物中磷溶出的影响。结果表明,阳宗海水体在目前这种磷浓度下,底泥的磷会随时间的增加而溶出再次造成水体磷污染,当暴露在清洁水条件下时磷的释放率会增加;这种由于絮凝剂吸附沉淀到湖底的磷,在上覆水pH增加0.5时底泥磷解吸附释放速率增加;每年秋季湖泊上下层水的交换活动会造成水体磷浓度的季节性升高,形成不可忽视的磷内源。而夏季水温分层导致湖泊底部厌氧,使厌氧微生物活性增强,这将进一步促进底泥中磷的释放。  相似文献   

4.
《Chemosphere》2013,90(11):1390-1398
Thioarsenates were previously determined as dominant species in geothermal and mineral waters with excess sulfide. Here, we used batch leaching experiments to determine their formation upon weathering or industrial leaching of the arsenic-sulfide minerals orpiment (As2S3) and arsenopyrite (FeAsS) under different pH and oxygen conditions. Under acidic conditions, as expected based on their known kinetic instability at low pH, no thioarsenates formed in either of the two mineral systems. Under neutral to alkaline conditions, orpiment dissolution yielded mono-, di- and trithioarsenate which accounted for up to 43–55% of total arsenic. Thioarsenate formation upon arsenopyrite dissolution was low at neutral (4%) but significant at alkaline pH, especially under suboxic to sulfidic conditions (20–43%, mainly as monothioarsenate). In contrast to orpiment, we postulate that recombination of arsenite and sulfide in solution is of minor importance for monothioarsenate formation during alkaline arsenopyrite dissolution. We propose instead that hydroxyl physisorption lead to formation of As-OH-S surface complexes by transposition of hydroxyl anions to arsenic or iron sites. Concurrently formed ironhydroxides could provide re-sorption sites for the freshly released monothioarsenate. However, sorption experiments with goethite showed slower sorption kinetics of monothioarsenate compared to arsenite, but comparable with arsenate. The discovery that thioarsenates are released by natural weathering and industrial leaching processes and that, once they are released, have a higher mobility than the commonly-investigated species arsenite and arsenate requires future studies to consider them when assessing arsenic release in sulfidic natural or mining-impacted environments.  相似文献   

5.
Thioarsenate formation upon dissolution of orpiment and arsenopyrite   总被引:5,自引:0,他引:5  
Thioarsenates were previously determined as dominant species in geothermal and mineral waters with excess sulfide. Here, we used batch leaching experiments to determine their formation upon weathering or industrial leaching of the arsenic-sulfide minerals orpiment (As2S3) and arsenopyrite (FeAsS) under different pH and oxygen conditions. Under acidic conditions, as expected based on their known kinetic instability at low pH, no thioarsenates formed in either of the two mineral systems. Under neutral to alkaline conditions, orpiment dissolution yielded mono-, di- and trithioarsenate which accounted for up to 43-55% of total arsenic. Thioarsenate formation upon arsenopyrite dissolution was low at neutral (4%) but significant at alkaline pH, especially under suboxic to sulfidic conditions (20-43%, mainly as monothioarsenate). In contrast to orpiment, we postulate that recombination of arsenite and sulfide in solution is of minor importance for monothioarsenate formation during alkaline arsenopyrite dissolution. We propose instead that hydroxyl physisorption lead to formation of As-OH-S surface complexes by transposition of hydroxyl anions to arsenic or iron sites. Concurrently formed ironhydroxides could provide re-sorption sites for the freshly released monothioarsenate. However, sorption experiments with goethite showed slower sorption kinetics of monothioarsenate compared to arsenite, but comparable with arsenate. The discovery that thioarsenates are released by natural weathering and industrial leaching processes and that, once they are released, have a higher mobility than the commonly-investigated species arsenite and arsenate requires future studies to consider them when assessing arsenic release in sulfidic natural or mining-impacted environments.  相似文献   

6.
金矿开采引起砷污染的初步研究及治理措施   总被引:1,自引:0,他引:1  
砷伴生于许多有色金属之中,随着含砷矿床的开采,导致砷由地层深处转至地表,改变了它们迁移的地球化学条件,容易释放到周围环境中。以辽宁某金矿为例,调查并阐述了金矿开采过程中的砷释放,以及尾矿渣的堆放,随废水排放造成对周围河流的砷污染情况,提出了适合金矿床开采的砷污染治理方法。  相似文献   

7.
Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today’s scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation.  相似文献   

8.
A successful application of reaction transport algorithms to calculate the chemical evolution of natural systems requires accurate methods to compute the rates of mineral/fluid surface reactions. Regarding the transport of radio-nuclides in mining dumps the dissolution of minerals is of special importance. Using a kinetic rate law of the mineral dissolution verified for unsaturated conditions will allow a realistic modelling of the mineral weathering in the environment. Dissolution rates of minerals in an aqueous solution are determined by several characteristics. These are surface reaction rates, morphology of the mineral's surface and, in case it is the unsaturated zone, the degree of the water saturation. For this process, the quantity of the particle surfaces which are in contact with percolating water is most decisive. In order to study the differences of mineral dissolution under saturated and unsaturated conditions batch and column experiments were carried out with a pyrite-calcite mixture. The experimental results were verified by calculations. Comparing the dissolution in batch with those in the column experiment, which was performed with a water flow velocity of 0.64 cm/day and was analyzed in the region of a water saturation of 0.11, one can conclude that only a small portion of about 5% of the grain surface is chemically reactive in this unsaturated flow.  相似文献   

9.
Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 microg/L the average being 29 microg/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 microg/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (< 15 m), arsenic concentrations are low likely due to the formation of insoluble ferrosoferric hydroxide complex. In deep groundwater (> 15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals.  相似文献   

10.
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Marku?ovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation–equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite?>?pyrite?>?tetrahedrite?>?arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16–8.12) and the waters (pH 7.00–8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu?>?Sb?>?Hg?>?As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52–7.96) and low concentrations of dissolved metal(loid)s (<5–7.0 μg/L Cu, <0.1–0.3 μg/L Hg, 5.0–16 μg/L As, and 5.0–43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.  相似文献   

11.
布洛芬作为一种高性价比消炎药被大量使用,环境中布洛芬浓度升高易引起抗生素抗性基因污染等环境问题。本研究构建了双室微生物燃料电池(MFCs)以去除水中布洛芬,分析了阳极生物膜微生物群落结构并注释了基因功能。结果表明,MFCs阳极微生物以10 mg·L-1布洛芬作为唯一碳源,外接1 000 Ω电阻,输出电压约为0.60 V,运行至108 h时布洛芬去除率达85.33%,是对照厌氧生物处理的3.18倍。微生物群落结构分析结果表明,MFCs阳极生物膜微生物群落结构与传统厌氧生物膜差异显著,Proteobacteria在阳极生物膜相对丰度高达83.57%,而对照组中仅为60.52%,PusillimonasBurkholderiaAgrobacteriumMartelellaRuegeria在属水平相对丰度也高于对照组。代谢通路分析结果表明,环境信息处理通路在MFCs阳极微生物显著增强,其碳代谢及氮代谢基因数量分别高于对照组9.02%和28.58%。  相似文献   

12.
土壤中砷的化学平衡   总被引:2,自引:0,他引:2  
本文比较详细地综述了砷的化学特性,环境背景值及来源和循环,土壤中砷的三大化学平衡即沉淀溶解平衡,氧化还原平衡,吸附解吸平衡,以及微生物对砷的转化。  相似文献   

13.
Aquatic arsenic: phytoremediation using floating macrophytes   总被引:3,自引:0,他引:3  
Rahman MA  Hasegawa H 《Chemosphere》2011,83(5):633-646
Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes.  相似文献   

14.
Surface soil samples, which had no significant As contamination, were examined for As(V) reduction, As(III) oxidation and As mobilization capability. All five soil samples tested exhibited microbial As(V)-reducing activities both in aerobic and anaerobic conditions. Under aerobic conditions when As(V) reduction had almost ceased, oxidation of As(III) to As(V) occurred, whereas only As(V) reduction was observed under anaerobic conditions. In cultures incubated with As(III), As(III) was oxidized by indigenous soil microbes only under aerobic conditions. These results indicate that microbial redox transformations of As are ubiquitous in the natural environment regardless of background As levels. Mobilization through microbially mediated As(V) and Fe(III) reduction occurred both in the presence and absence of oxygen. Significant variation in dissolved As occurred depending on the Fe contents of soils, and re-immobilization of As arose in the presence of oxygen, presumably as a consequence of dissolved As(III) and Fe(II) oxidation. There was no apparent correlation between dissolved Fe(II) and As, suggesting that reductive dissolution of Fe(III) minerals does not necessarily determine the extent of As release from soils.  相似文献   

15.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

16.
Meunier L  Koch I  Reimer KJ 《Chemosphere》2011,84(10):1378-1385
Dissolution kinetics of arsenic from soils and tailings were studied under simulated gastrointestinal conditions to determine the effects of residence time, pH and soil composition on the bioaccessibility of arsenic. The samples were sieved to four particle size fractions from bulk to <45 μm, and included arsenic minerals, soils and tailings with total arsenic concentrations ranging from 19 to 420 00 mg kg−1. The bioaccessible arsenic concentrations varied from 2.8 to 10 000 mg kg−1, and the highest concentrations were associated with the smallest particle size fractions. Kinetic parameters were determined for each sample extracted under gastric conditions (pH = 1.8) followed by intestinal conditions (pH = 7.0). Under gastric pH conditions, dissolution appeared to be diffusion-controlled and followed an exponential curve, whereas a logarithmic or linear model was used to describe the mixed dissolution mechanisms observed under intestinal conditions. Nine of the 13 samples tested reached a steady state bioaccessible arsenic concentration within the 5-h physiologically-based extraction test (PBET). However the bioaccessible arsenic concentrations in four tailings samples increased significantly (= 0.034) between the 5-h and the extended 24-h extraction under intestinal conditions. Since arsenic absorption may occur along the entire digestive tract, assessments based on the standard 5-h PBET extraction may not adequately estimate the risks associated with arsenic absorption in such cases. The slow dissolution kinetics associated with secondary arsenic minerals in some tailings samples may require extending the PBET extractions to longer periods, or extrapolating using the proposed kinetic models, to reach steady state concentrations in simulated gastrointestinal fluids.  相似文献   

17.
Bensulfuron toxicity on soil microbes was evaluated by the methods used in a previous study on cinosulfuron; the effects of the two sulfonylureas were compared. Cinosulfuron and bensulfuron, at the normal field application rate and 100 times higher, had no effect on the total number of bacteria and nitrifiers, or on the respiration activity in the soil, but they did decrease the nitrification activity. In vitro toxicity tests carried out on representative soil microbial strains using bensulfuron at 50 mg l(-1) showed some inhibition of three of the 17 bacterial strains and strong inhibition of almost all the 12 fungal strains; cinosulfuron had had no effect on any of these strains in the previous study. It is concluded that, compared with cinosulfuron, bensulfuron is potentially more toxic on soil heterotrophic microorganisms, but only at very high concentrations that are nearly impossible to reach with the usual agricultural use of the herbicides. However, autotrophic nitrifiers were more sensitive to both sulfonylureas than the other microorganisms.  相似文献   

18.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

19.

Antu County in the Changbai Mountains is an important source of mineral water, but there is a lack of research on the source of groundwater characteristic components, affecting the protection of water resources. This study obtained hydrochemical and isotopic data (28 groups in total, April and September in 2019) by summarizing research and sampling data in order to identify the formation process of characteristics. The formation mechanism of the characteristic components was revealed using geostatistical, isotopic, and hydrogeochemical inversion simulations. The results show that the metasilicic acid is a common component of groundwater water chemistry in the study area. The water body primarily receives stable recharge from low-mineralized precipitation with ages ranging from 27.7 to 38.4 years and recharge elevations ranging from 1160 to 2393 m, providing ample time for water–rock interaction. The dissolution of olivine, pyroxene, albite, and other siliceous minerals is the source of characteristic components, and deep faults and deep basalt heat flow are the key conditions for the formation of metasilicic acid. When low-mineralized precipitation recharges the underground aquifer, it dissolves the silica-aluminate and silicon-containing minerals in the surrounding rocks through the water–rock action under the effect of CO2, causing a large amount of metasilic acid to dissolve into the groundwater and forming metasilic acid-type mineral water.

  相似文献   

20.
Bensulfuron toxicity on soil microbes was evaluated by the methods used in a previous study on cinosulfuron; the effects of the two sulfonylureas were compared. Cinosulfuron and bensulfuron, at the normal field application rate and 100 times higher, had no effect on the total number of bacteria and nitrifiers, or on the respiration activity in the soil, but they did decrease the nitrification activity. In vitro toxicity tests carried out on representative soil microbial strains using bensulfuron at 50 mg l?1 showed some inhibition of three of the 17 bacterial strains and strong inhibition of almost all the 12 fungal strains; cinosulfuron had had no effect on any of these strains in the previous study. It is concluded that, compared with cinosulfuron, bensulfuron is potentially more toxic on soil heterotrophic microorganisms, but only at very high concentrations that are nearly impossible to reach with the usual agricultural use of the herbicides. However, autotrophic nitrifiers were more sensitive to both sulfonylureas than the other microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号