首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study is to assess the evolving mine water quality of closed uranium mines (abandoned between 1958 and 1992) in the Czech Republic. This paper focuses on the changes in mine water quality over time and spatial variability. In 2010, systematic monitoring of mine water quality was performed at all available locations of previous uranium exploitation. Gravity flow discharges (mine adits, uncontrolled discharges) or shafts (in dynamic state or stagnating) were sampled. Since the quality of mine water results from multiple conditions—geology, type of sample, sampling depth, time since mine flooding, an assessment of mine water quality evolution was done taking into account all these conditions. Multivariate analyses were applied in order to identify the groups of samples based on their similarity. Evaluation of hydrogeochemical equilibrium and evolution of mine waters was done using the Geochemist’s Workbench and PHREEQC software. The sampling proved that uranium concentrations in mine waters did not predominantly exceed 0.45 mg/L. In case of discharges from old adits abandoned more than 40 years ago, uranium concentrations were below the MCL of US Environmental Protection Agency for uranium in drinking water (0.03 mg/L). Higher concentrations, up to 1.23 mg/L of U, were found only at active dewatered mines. Activity concentration of 226Ra varied from 0.03 up to 1.85 Bq/L except for two sites with increased background values due to rock formation (granites). Radium has a typically increasing trend after mine abandonment with a large variability. Concerning metals in mine water, Al, Co and Ni exceeded legislative limits on two sites with low pH waters. The mine water quality changes with a focus on uranium mobility were described from recently dewatered mines to shafts with water level maintained in order to prevent outflows to surface water and finally to stagnating shafts and discharges of mine water from old adits. The results were in good agreement with published experience on mine water stratification, its disturbance by pumping or natural water decant and the “first flush” phenomenon after mine flooding.  相似文献   

2.
Kim MJ  Ahn KH  Jung Y 《Chemosphere》2002,49(3):307-312
The main objective of the present study is to determine arsenic species in mine tailings by applying an ion exchange method. Three abandoned mines, Jingok, Cheonbo and Sino mines in Korea, which had produced mainly gold, were selected for the collection and analysis of the tailings. It was found that the arsenic speciation using an ion exchange method was effective to separate As(III) and As(V) in leachate of mine tailings. The concentration of As(V) was found to be 63-99% in the leachate, indicating that As(V) would be the major arsenic species in the mine tailings and the tailings were under oxic conditions. The total concentrations of arsenic and metal elements in the mine tailings were up to 62,350 mg/kg As, 40 wt.% Fe, 21,400 mg/kg Mn, and 7,850 mg/kg Al. Sulfate was the dominant anion throughout the leachate, reaching a maximum dissolved concentration of 734 mg/l. The results of XRD and SEM in the mine tailings showed that main arsenic-containing minerals were pyrite (FeS2) and arsenopyrite (FeAsS) which would be the source of arsenic contamination in the study area.  相似文献   

3.
Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.  相似文献   

4.
5.
Expedited site characterization and groundwater monitoring using direct-push technology and conventional monitoring wells were conducted at a former manufactured gas plant site. Biogeochemical data and heterotrophic plate counts support the presence of microbially mediated remediation. By superimposing solutions of a two-dimensional reactive transport analytical model, first-order degradation rate coefficients ((day-1) ) of various compounds for the dissolved-phase plume were estimated (i.e., benzene [0.0084], naphthalene [0.0058], and acenaphthene [0.0011]). The total mass transformed by aerobic respiration, nitrate reduction, and sulfate reduction around the free-phase coal-tar dense-nonaqueous-phase-liquid region and in the plume was estimated to be approximately 4.5 kg/y using a biogeochemical mass-balance approach. The total mass transformed using the degradation rate coefficients was estimated to be approximately 3.6 kg/y. Results showed that a simple two-dimensional analytical model and a biochemical mass balance with geochemical data from expedited site characterization can be useful for rapid estimation of mass-transformation rates.  相似文献   

6.
Cryogenic time-resolved laser-induced fluorescence spectroscopy was successfully used to identify uranium binding forms in selected German mineral waters of extremely low uranium concentrations (<2.0 μg/L). The measurements were performed at a low temperature of 153 K. The spectroscopic data showed a prevalence of aquatic species Ca2UO2(CO3)3 in all investigated waters, while other uranyl–carbonate complexes, viz, UO2CO3(aq) and UO2(CO3)2 2?, only existed as minor species. The pH value, alkalinity (CO3 2?), and the main water inorganic constituents, specifically the Ca2+ concentration, showed a clear influence on uranium speciation. Speciation modeling was performed using the most recent thermodynamic data for aqueous complexes of uranium. The modeling results for the main uranium binding form in the investigated waters indicated a good agreement with the spectroscopy measurements.  相似文献   

7.
Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.  相似文献   

8.
Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na+, K+, Ca2+ and Mg2+) and anions (F?, Cl?, NO3 ?, CO3 2?, SO4 2?) concentrations and were submitted to an “evaporation-precipitation” experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.  相似文献   

9.
Jang M  Hwang JS  Choi SI 《Chemosphere》2007,66(1):8-17
Sequential washing techniques using single or dual agents [sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions] were applied to arsenic-contaminated soils in an abandoned iron-ore mine area. We investigated the best remediation strategies to maximize arsenic removal efficiency for both soils and arsenic-containing washing solution through conducting a series of batch experiments. Based on the results of a sequential extraction procedure, most arsenic prevails in Fe-As precipitates or coprecipitates, and iron exists mostly in the crystalline forms of iron oxide. Soil washing by use of a single agent was not effective in remediating arsenic-contaminated soils because arsenic extractions determined by the Korean standard test (KST) methods for washed soils were not lower than 6mg kg(-1) in all experimental conditions. The results of X-ray diffraction (XRD) indicated that iron-ore fines produced mobile colloids through coagulation and flocculation in water contacting the soils, containing dissolved arsenic and fine particles of ferric arsenate-coprecipitated silicate. The first washing step using 0.2M HCl was mostly effective in increasing the cationic hydrolysis of amorphous ferrihydrite, inducing high removal of arsenic. Thus, the removal step of arsenic-containing flocs can lower arsenic extractions (KST methods) of washed soils. Among several washing trials, alternative sequential washing using 0.2M HCl followed by 1M HCl (second step) and 1M NaOH solution (third step) showed reliable and lower values of arsenic extractions (KST methods) of washed soils. This washing method can satisfy the arsenic regulation of washed soil for reuse or safe disposal application. The kinetic data of washing tests revealed that dissolved arsenic was easily readsorbed into remaining soils at a low pH. This result might have occurred due to dominant species of positively charged crystalline iron oxides characterized through the sequential extraction procedure. However, alkaline extraction using NaOH was effective in removing arsenic readsorbed onto the surface of crystalline minerals. This is because of the ligand displacement reaction of hydroxyl ions with arsenic species and high pH conditions that can prevent readsorption of arsenic.  相似文献   

10.
Environmental Science and Pollution Research - Water level and wind speed have important influences on radon release in particle-packing emanation media. Based on radon migration theory in porous...  相似文献   

11.
Environmental Science and Pollution Research - Dodonaea viscosa (L.) Jacq. is a plant with a wide distribution that expands throughout almost all Mexican territory and is used in traditional...  相似文献   

12.

An analytical methodology was developed to characterize the colloidal distribution of trace elements of interest in environmental waters sampled in a same site and enables the different colloidal distributions from waters to be compared. The purpose was to provide consistent information related to the origin and nature of colloids responsible for the transport of trace element(s). The work was motivated by the observed enhanced mobility of uranium in soil. The colloidal size continuum was investigated by a multi-technique approach involving asymmetric flow field-flow fractionation (AF4) coupled with ultraviolet spectroscopy (UV), multi angle light scattering (MALS), and atomic mass spectrometry (ICPMS). To take into consideration the size and shape variability specific to each sample, the size distributions were established from the gyration radii measured from MALS, also considering the size information from standard nanospheres fractionated by AF4. A new parameter called “shape index” was proposed. It expresses the difference in hydrodynamic behavior between analytes and spherical particles taken as reference. Under AF4 diffusion conditions, it can be considered as an evaluator of the deviation from the sphericity of the fractionated analytes. AF4-UV-MALS-ICPMS enabled the dimensional and chemical characteristics of the colloidal size continuum to be obtained. As a “proof of concept”, the developed methodology was applied at a field scale, in a reference study site. In order to have a “dynamic understanding”, the investigation was based on the joint characterization of colloids from surface waters and soil leachates from static and dynamic processes. In the water samples of the study site, the continuum of gyration radius ranged from a few nanometers up to 200 nm. Colloids containing iron, aluminum, and organic carbon were involved in the uranium transport in the soil column and surface waters. The colloidal uranium concentration in the surface water increased from the upstream location (approximately 13 ng (U) L?1) to the downstream location (approximately 60 ng (U) L?1).

  相似文献   

13.
Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb–Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4 2? and HCO3 ?. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4 2?, Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality.  相似文献   

14.
在某废弃的铀矿周围农田选取10个土壤样点,采集表层土壤下(0~60 cm)不同深度的60个土壤样品,分析其中重金属和放射性元素污染水平,并进行污染修复方案设计。结果表明:Pb、Cd、Cu、Zn、As、Hg、Cr、Mn、Ni、U和232Th的平均浓度分别为2 275.69、6.09、71.51、1 230.47、47.87、502.81、46.22、422.39、12.01、74.05和27.28 mg·kg-1,Pb、Cd、Cu、Zn、As、Hg和U的浓度高于研究区域土壤环境背景值,原采矿场和原堆积矿场是重点污染区域;地累积指数(Igeo)显示农田Hg处于高污染水平,Cd、Zn、Pb和U处于中度污染水平以上。采用覆土、钝化和植物修复相结合的方法进行原矿区场地修复。在原矿区场地加入钝化剂或植物提取修复之前进行覆土。结果表明原采矿场、原堆积矿场分别覆土140和120 cm,氡析出率≤0.74 Bq·(m2·s)-1,γ射线剂量率接近30×10-8 Gy·h-1。结果满足环境标准要求。  相似文献   

15.
Aliphatic (ALI) and aromatic (ARO) hydrocarbon concentrations, composition and sources were evaluated in waters, sediments, soils and biota to assess the impact of approximately 1000 tons of oil spilled in Rio de la Plata coastal waters. Total ALI levels ranged from 0.4-262 microg/l in waters, 0.01-87 microg/g in sediments, 5-39 microg/g in bivalves, 12-323 microg/g in macrophytes to 948-5187 microg/g in soils. ARO varied from non-detected 10 microg/l, 0.01-1.3 mug/g, 1.0-16 microg/g, 0.5-6.9 microg/g to 22-67 microg/g, respectively. Offshore (1, 5, 15 km) waters and sediments were little affected and contained low background hydrocarbon levels reflecting an effective wind-driven transport of the slick to the coast. Six months after the spill, coastal waters, sediments, soils and biota still presented very high levels exceeding baseline concentrations by 1-3 orders of magnitude. UCM/resolved aliphatic ratio showed a clear trend of increasing decay: coastal waters (3.3) < macrophytes (6.7) < soils (9.4) < offshore sediments (13) < coastal sediments (17) < clams (52). All environmental compartments consistently indicated that the most impacted area was the central sector close to Magdalena city, specially low-energy stream embouchures and bays which acted as efficient oil traps. The evaluation of hydrocarbon composition by principal component analysis indicated the predominance of biogenic (algae, vascular plant cuticular waxes), background anthropic, pyrogenic and diagenetic hydrocarbons, offshore and in non-impacted coastal sites. In contrast, polluted stations presented petrogenic signatures characterized by the abundance of isoprenoids, low molecular weight n-alkanes and methylated aromatics in different stages of alteration. The petrogenic/biogenic ratio ( n-C23) and petrogenic/pyrogenic relationship (methylated/unsubstitued PAH) discriminated the samples according to the different degree of impact. The following paper present the results of the study of the progress of hydrocarbon disappearance in sediments and soils 13 and 42 months after the spill.  相似文献   

16.
Decomposer animals and bioremediation of soils   总被引:17,自引:0,他引:17  
Although microorganisms are degrading the contaminants in bioremediation processes, soil animals can also have important--while usually an indirect--role in these processes. Soil animals are useful indicators of soil contamination, both before and after the bioremediation. Many toxicity and bioavailability assessment methods utilizing soil animals have been developed for hazard and risk-assessment procedures. Not only the survival of the animals, but also more sensitive parameters like growth, reproduction and community structure have often been taken into account in the assessment. The use of bioassays together with chemical analyses gives the most reliable results for risk analyses. This is because physical, chemical and biological properties of the remediated soil may be changed during the process, and it is possible that transformation rather than mineralization of the contaminants has taken place. In addition, the soil may contain other harmful substances than those searched in chemical analyses. Finally, because the ultimate goal of the bioremediation should be--together with mineralization of the harmful substances--the ecological recovery of the soil, development of diverse decomposer community as a basis of the functioning ecosystem should be ensured. Soil animals, especially the large ones, can also actively take part in the ecological recovery processes through their own activity. The potential risk of transfer of contaminants accumulated in soil animals to the above-ground food webs should be borne in mind.  相似文献   

17.
Anaerobic transformations and bioremediation of chlorinated solvents   总被引:8,自引:0,他引:8  
Chlorinated aliphatic compounds, notably the chlorinated solvents, are common contaminants in soil and groundwater at hazardous waste sites. While these compounds are often recalcitrant, under favorable conditions they can be transformed and degraded through microbially mediated processes. There is great interest in understanding the transformations that are observed at contaminated sites and in manipulating these systems to achieve remediation. An important class of transformations occurs in anaerobic environments. Many of the transformations are reductive, and many yield useful energy to specific anaerobic bacteria. They include reductive dechlorination, dehydrochlorination and dichloroelemination. Of these, reductive dechlorination is often a growth-supporting reaction, while the others may be abiological or catalyzed by biological molecules. The reactions may result in chlorinated products, but there are often reaction sequences leading to completely dechlorinated products. The behavior of carbon tetrachloride (CT), 1,1,2,2-tetrachloroethane (TeCA) and the chloroethenes, perchloroethylene (PCE) and trichloroethylene (TCE), illustrate the range of anaerobic transformations that are possible, as well as the limited transformation that often is seen in the environment. CT undergoes reductive and substitutive reactions that are catalyzed by biological molecules but do not support bacterial growth. The anaerobic degradation of TeCA, which is a major contaminant at a site near Tacoma, WA, USA, provides examples of each type of transformation, and the products formed are consistent with the chlorinated compounds that are found in groundwater extraction wells. A laboratory study, using anaerobic sludge that had been fed chlorinated compounds, a cell-free extract from the sludge, and killed controls, showed that TeCA was transformed to four products and that these were further transformed, suggesting that it might be possible to degrade TeCA to innocuous products. Reductive dechlorination of PCE and TCE has been studied in many laboratories. Studies with mixed anaerobic consortia and with several dehalogenating bacteria, including strain 195 (. Isolation of a bacterium that reductively dechlorinates tetrachloroethane to ethane. Science 276, 1568-1571) that transforms PCE to ethene, have demonstrated that reductive dechlorination supports growth of the novel bacteria that carry out the reactions. Hydrogen has been shown to be an electron donor for the bacterial dehalogenation reactions, and kinetic and thermodynamic considerations indicate that dehalogenators can compete in some, but not all, anaerobic environments, pointing to applications of in situ bioremediation and to its limitations. Selected field studies of anaerobic transformations help delineate the applications of this type of bioremediation.  相似文献   

18.
In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.  相似文献   

19.
Elevated concentrations of arsenic, nickel, and molybdenum in aquatic systems around northern Saskatchewan uranium mines are an environmental concern. Early life stage fathead minnows were used to assess toxicity from several aquatic systems near the Key Lake and Rabbit Lake uranium operations. Hatching success of fish embryos exposed to waters receiving contaminants associated with uranium ore milling was reduced by 32-61% relative to controls. Mortality differed in two lakes receiving mill effluents because of opposing factors influencing metal toxicity (i.e. low pH and high hardness). In one mill receiving water (Fox Lake), larval mortality was 0%, whereas mortality was 85% in water collected from a downstream location (Unknown Lake). Fish embryos exposed to open-pit dewatering effluent receiving waters, or water from a flooded open pit (i.e. pit waters), hatched 26-39% earlier than those exposed to reference or control water. The combination of low water hardness and elevated nickel concentrations in pit waters contributed to the early hatching. Egg hatchability and hatching time were more sensitive indicators of toxicity than 'standard' endpoints, like larval mortality and growth. Current regulatory emphasis on single contaminants and standard toxicological endpoints should be re-evaluated in light of the complex interaction among confounding variables such as pH, hardness. conductivity, and multi-metal mixtures.  相似文献   

20.
In Kyrgyzstan, many former storehouses and dump sites for obsolete pesticides exist. In 2009/2010, an inventory and assessment of these sites including risks of environmental hazard has been conducted by FAO and the World Bank. Monitoring revealed high concentration of pesticides listed as persistent organic pollutants (POPs). The purpose of this research was to study the microbial structural complexes of the pesticide-contaminated soils in these dumping zones, and to search for and select microorganism’s destructors with cytochrome P450 genes for pesticide degradation. Culture-dependent and culture-independent approaches were used to determine the taxonomic composition of these bacterial communities. The universal primer set for the 16S ribosomal RNA (rRNA) gene and the specific primer set P450R were used to amplify the cytochrome P450 hydroxylase gene. In soils from Suzak A and B and soils from Balykchy dumping sites, the bacteria from the Actinobacteria phylum (Micrococcus genus) were dominant. These bacteria made up 32–47% of the indigenous local microflora; bacteria species from the Pseudomonas genus (Gammaproteobacteria phylum) made up 23% in Suzak, 12% in Balykchy soils. Bacillus species from the Firmicutes phylum were found only in Suzak soils. The 16S rRNA analyses and the specific primer set P450R have revealed bacteria with cytochrome genes which are directly involved in the degradation process of organic carbon compounds. Experiments were carried out to help select active degraders from the bacterial populations isolated and used to degrade Aldrin in laboratory. Active bacterial strains from the Pseudomonas fluorescens and Bacillus polymyxa population were selected which demonstrated high rates of degradation activity on Aldrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号