首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the knowledge obtained from acid mine drainage formation in mine waste environments (tailings impoundments and waste rock dumps), a new methodology is applied to characterize new ore deposits before exploitation starts. This gives the opportunity to design optimized processes for metal recovery of the different mineral assemblages in an ore deposit and at the same time to minimize the environmental impact and costs downstream for mine waste management. Additionally, the whole economic potential is evaluated including strategic elements. The methodology integrates high-resolution geochemistry by sequential extractions and quantitative mineralogy in combination with kinetic bioleach tests. The produced data set allows to define biogeometallurgical units in the ore deposit and to predict the behavior of each element, economically or environmentally relevant, along the mining process.  相似文献   

2.
Concas A  Ardau C  Cristini A  Zuddas P  Cao G 《Chemosphere》2006,63(2):244-253
In this paper the results of a recent characterization of Rio Piscinas (SW of Sardinia, Italy) hydrological basin are reported. In such area (about 50 km2), previous mining activities caused a serious heavy metal contamination of surface waters, groundwater, soils and biota. Acid mine drainage phenomena were observed in the area. The main sources of contamination are the tailings stored in mine tunnels and abandoned along fluvial banks. A methodological approach was adopted in order to identify relations between tailings and water contamination. Representative samples of tailings and stream sediments samples were collected. XRD analyses were performed for mineralogical characterization, while acid digestion was carried out for determining metal contents. Batch sequential leaching tests were performed in order to assess metal mobility. Also groundwater and stream water were sampled in specific locations and suitably characterized. All information collected allowed the understanding of the effect of tailings on water contamination, thus contributing to the qualitative prediction of pollution evolution on the basis of metal mobility. Finally, a potential remediation strategy of stream water is proposed.  相似文献   

3.
Acid mine drainage (AMD) results from the oxidation of sulfides, mainly pyrite, present in mine wastes, either mill tailings or waste rock. This is the second of two papers describing the coupled physical processes taking place in waste rock piles undergoing AMD production. Since the oxidation of pyrite involves the consumption of oxygen and the production of heat, the oxidation process initiates coupled processes of gas transfer by diffusion and convection as well as heat transfer. These processes influence the supply of oxygen that is required to sustain the oxidation process. This second paper describes a numerical simulator used to represent the interaction of these coupled transfer processes. Numerical simulations are applied to two large sites with extensive characterization programs and widely different properties and behavior that were described in the first paper. The South Dump of the Doyon mine in Canada is permeable and has a high pyrite oxidation rate, thus making temperature-driven air convection the main oxygen supply mechanism. The Nordhalde of the Ronnenberg mining district in Germany contains lower permeability material which is less reactive, thus leading to a more balanced contribution of gaseous diffusion and convection as oxygen supply mechanisms. Overall, simulations allow a coherent representation of the conditions monitored within the waste rock piles and the confirmation of their physical properties. Conceptual simulations are also carried out to illustrate the potential effect of border membranes and layered co-mingling as mitigation methods used to control AMD production in either active or future waste rock piles.  相似文献   

4.
Acid mine drainage (AMD) results from the oxidation of sulfides, mainly pyrite, present in mine wastes, either mill tailings or waste rock. This is the first of two papers describing the coupled physical processes taking place in waste rock piles undergoing AMD production. Since the oxidation of pyrite involves the consumption of oxygen and the production of heat, the oxidation process initiates coupled processes of gas transfer by diffusion and convection as well as heat transfer. These processes influence the supply of oxygen that is required to sustain the oxidation process. This first paper describes a general conceptual model of the interaction of these coupled transfer processes. This general conceptual model is illustrated by the physicochemical conditions observed at two large sites where extensive characterization programs revealed widely different properties. The South Dump of the Doyon mine in Canada is permeable and has a high pyrite oxidation rate leading to high temperatures (over 65 degrees C), thus making temperature-driven air convection the main oxygen supply mechanism. The Nordhalde of the Ronnenberg mining district in Germany contains lower permeability material which is less reactive, thus leading to a more balanced contribution of gaseous diffusion and convection as oxygen supply mechanisms. The field characterization and monitoring data at these sites were thoroughly analyzed to yield two coherent sets of representative physical properties. These properties are used in the second paper as a basis for applications of numerical simulation in AMD-producing waste rock piles.  相似文献   

5.
Nant Gwydyr, a tributary of the River Conwy in North Wales, has been affected by metal wastes, from a lead and zinc mine, Parc Mine, through contaminated mine drainage waters and episodal erosion of an unstable tailings heap. From 1954 when the mining operation was discontinued to 1978 when a reclamation programme aimed to stabilise the tailings was accomplished, 13 000 tonnes of metalliferous spoil, containing 43 tonne Pb, 104 tonne Zn, and 1 tonne Cd was eroded from the main tailings dam. Dispersal and redeposition during flood events caused extensive pollution of the agricultural land of the flood plain. Analysis of the present water quality of the Nant Gwydyr, 14 years after the stabilisation work, shows that although there has been a marked improvement and no particulate matter is released, the Nant Gwydyr is still a polluted stream. Under normal discharge conditions, it contributes approximately 1 tonne of Zn, 0.2 tonne of Pb and 0.05 tonne of Cd per year to the River Conwy. Most of this originates from water issuing from the mine adit which has been impossible to control. There is still, however, a major contribution by the leachate from the tailings heap, because the stabilisation method used does not prevent this. The control of pollution in mine drainage is discussed.  相似文献   

6.
Development and application of biotechnologies in the metal mining industry   总被引:1,自引:0,他引:1  
Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using “ecological engineering” approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.  相似文献   

7.
Environmental Science and Pollution Research - The tailings produce acid mine drainage (AMD) due to sulfide minerals, especially pyrite oxidation. AMD has caused serious pollution to the...  相似文献   

8.
Development of mineral resources and the increasing mining waste emissions have created a series of environmental and health-related issues. Nowadays, the ecological restoration of mining tailings has become one of the urgent tasks for mine workers and environmental engineers all over the world. Aim of the present paper is to highlight the previous restoration techniques and the challenges encountered during the restoration of mine tailings. As it is a common practice that, before restoring of tailings, the site should be evaluated carefully. Studies showed that the mine tailings’ adverse properties, including excessive heavy metal concentration, acidification, improper pH value, salinization and alkalization, poor physical structure and inadequate nutrition, etc., are the major challenges of their restoration. Generally, four restoration technologies, including physical, chemical, phytoremediation, and bioremediation, are used to restore the mining tailings. The working mechanism, advantages, and disadvantages of these techniques are described in detail. In addition, selection of the suitable restoration techniques can largely be carried out by considering both the economic factors and time required. Furthermore, the ecosystem restoration is perceived to be a more promising technology for mine tailings. Therefore, this extensive review can act as a valuable reference for the researchers involved in mine tailing restoration.  相似文献   

9.
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Marku?ovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation–equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite?>?pyrite?>?tetrahedrite?>?arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16–8.12) and the waters (pH 7.00–8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu?>?Sb?>?Hg?>?As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52–7.96) and low concentrations of dissolved metal(loid)s (<5–7.0 μg/L Cu, <0.1–0.3 μg/L Hg, 5.0–16 μg/L As, and 5.0–43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.  相似文献   

10.
The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning, in particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterised by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.  相似文献   

11.
The presence of Eriophorum angustifolium in mine tailings of pyrite maintains a neutral pH, despite weathering, thus lowering the release of toxic elements into acid mine drainage water. We investigated if the presence of slightly elevated levels of free toxic elements triggers the plant rhizosphere to change the pH towards neutral by increasing organic acid contents. Plants were treated with a combination of As, Pb, Cu, Cd, and Zn at different concentrations in nutrient medium and in soil in a rhizobox-like system for 48–120 h. The pH and organic acids were detected in the mucilage dissolved from root surface, reflecting the rhizospheric solution. Also the pH of root–cell apoplasm was investigated. Both apoplasmic and mucilage pH increased and the concentrations of organic acids enhanced in the mucilage with slightly elevated levels of toxic elements. When organic acids concentration was high, also the pH was high. Thus, efflux of organic acids from the roots of E. angustifolium may induce rhizosphere basification.  相似文献   

12.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

13.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

14.
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media.  相似文献   

15.

This study investigates the contents of lead, zinc, and cadmium in 109 near-surface soil samples collected around the abandoned mine of Fedj Lahdoum, northern Tunisia, to assess the risk of pollution they generate. The study involved some analytical procedures such as pH measurements, X-ray diffraction techniques, sequential fractionation, and geostatistical mapping using the ordinary Kriging techniques. The sequential fractionation revealed that the bioavailability of Pb, Zn, and Cd follows the orders F5?>?F3 » F4?>?F2 » F1, F5?>?F3 » F4 » F2?>?F1 and F5?>?F2 » F4?>?F1, respectively; their associations with organic matter and residual sulfides (F4) are relatively low. However, their high cumulated contents are dominantly associated with the residual (F5) and reducible (F3) fractions. The geostatistical mapping was endeavored to predict the spatial distribution of the studied heavy metals at unsampled sites and to produce a cumulated risk map of soil pollution. The latter is discussed with emphasis of the main factors responsible for the scattering of the pollution as much as the landscape conditions, the chemical composition of the mine tailings, the surface drainage of meteoric water and the wind. This study provides insight into the delineation of the spatial spreading of Pb, Zn, and Cd around the abandoned mine Fedj Lahdoum and their surrounding urban areas. It reveals that the mine infrastructure areas encompassing both extraction and processing and tailing deposition areas are the main sources of contamination. And the landscape conditions together with the surface drainage of meteoric water and the wind are the main factors responsible for the scattering of the pollution.

  相似文献   

16.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   

17.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

18.
Numerical simulations of layered, sulphide-bearing unsaturated waste rock piles are presented to illustrate the effect of coupled processes on the generation of acid mine drainage (AMD). The conceptual 2D systems were simulated using the HYDRUS model for flow and the POLYMIN model for reactive transport. The simulations generated low-pH AMD which was buffered by sequential mineral dissolution and precipitation. Sulphide oxidation rates throughout the pile varied by about two orders of magnitude (0.004-0.4 kg m-3 year-1) due to small changes in moisture content and grain size. In the fine-grained layers, the high reactive surface area induced high oxidation rates, even though capillary forces kept the local moisture content relatively high. In waste rock piles with horizontal layers, most of the acidity discharged through vertical preferential flow channels while with inclined fine grained layers, capillary diversion channeled the AMD to the outer slope boundary, keeping the pile interior relatively dry. The simulation approach will be useful for helping evaluate design strategies for controlling AMD from waste rock.  相似文献   

19.
Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity.  相似文献   

20.
Our work was conducted to investigate the heavy metal toxicity of tailings and soils collected from five metal mines located in the south of Morocco. We used the MetPAD biotest Kit which detects the toxicity specifically due to the heavy metals in environmental samples. This biotest initially developed to assess the toxicity of aquatic samples was adapted to the heterogeneous physico-chemical conditions of anthropogenic soils. Contrasted industrial soils were collected from four abandoned mines (A, B, C and E) and one mine (D) still active. The toxicity test was run concurrently with chemical analyses on the aqueous extracts of tailings materials and soils in order to assess the potential availability of heavy metals. Soil pH was variable, ranging from very acidic (pH 2.6) to alkaline values (pH 8.0-8.8). The tailings from polymetallic mines (B and D) contained very high concentrations of Zn (38,000-108,000 mg kg(-1)), Pb (20,412-30,100 mg kg(-1)), Cu (2,019-8,635 mg kg(-1)) and Cd (148-228 mg kg(-1)). Water-extractable metal concentrations (i.e., soil extracts) were much lower but were highly toxic as shown by the MetPAD test, except for soils from mines A, E and site C3 from mine C. The soil extracts from mine D were the most toxic amongst all the soils tested. On this site, the toxicity of soil water extracts was mainly due to high concentrations of Zn (785-1,753 mg l(-1)), Cu (1.8-82 mg l(-1)) and Cd (2.0-2.7 mg l(-1)). The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in tailings materials and soils. Therefore, the MetPAD test can be used as a rapid and sensitive predictive tool to assess the heavy metal availability in soils highly contaminated by mining activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号