首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m?2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.  相似文献   

2.
The levels of organochlorine pesticides (OCPs) in the water, suspended solids, and sediments from Lake Chaohu during the high water level period were measured by a solid-phase extraction gas chromatograph–electron capture detector. The spatial distributions of the three phases and the water/suspended solids and sediment/water partition coefficients were analyzed. The results showed the following: (1) The mean contents of OCPs in the water, suspended solids, and sediments were 132.4?±?432.1 ng/L, 188.1?±?286.7 ng/g dry weight (dw), and 13.7?±?9.8 ng/g dw, respectively. The dominant OCP components were isodrin (85.1 %) for the water, DDTs (64.4 %) for the suspended solids, and both isodrin (48.5 %) and DDTs (31.8 %) for the sediments. (2) β-HCH was the primary isomer of HCHs in the water and sediments, and the proportions were 61.7 and 41.3 %; γ-HCH was the primary isomer in the suspended solids, accounting for 49.3 %; p,p′-DDT was the dominant content of DDTs in the water and suspended solids, whereas p,p′-DDD was the main metabolite of DDTs in the sediments. (3) The concentrations of contaminants in the water from the western lake were greater than those from the eastern lake, but the concentrations in the suspended solids from the western lake were less than those from the eastern lake. (4) There was no significant correlation between the water–suspended solids partition coefficient K d and the n-octanol–water partition coefficient K ow, and between the sediment–water organic-C weighted sorption coefficients K oc and K ow.  相似文献   

3.
Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l?1 in 1990 to 98 μg 1?1 in 2008, while PO4-P increased from 4 μg l?1 in 1990 to 57 μg l?1 in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.  相似文献   

4.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

5.
High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl2?6H2O and MgSO4?7H2O) were tested at five dosages (250–1,500 mg/L) and different initial pH values. High removal rates (80–90 %) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75–85 %) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7–4.0 mS/cm), this could be partially solved by using Ca(OH)2 instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30 %). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10 %.  相似文献   

6.
Transformations of cocaine and eleven of its metabolites were investigated in untreated municipal sewage at pH?≈?7 and 9, 23, and 31 °C. Results indicated that hydrolysis—possibly bacterially mediated—was the principal transformation pathway. Residues possessing alkyl esters were particularly susceptible to hydrolysis, with pseudo-first-order rate constants varying from 0.54 to 1.7 day?1 at 23 °C. Metabolites lacking esters or possessing only a benzoyl ester appeared stable. Residues lacking alkyl esters did accumulate through hydrolysis of precursors, however. As noted previously, this may positively bias cocaine utilization estimates based on benzoylecgonine alone. Reported variability in metabolic excretion was used in conjunction with transformation data to evaluate different approaches for estimating cocaine loading. Results indicate that estimates derived from measurands that capture all major cocaine metabolites, such as COCtot (the sum of all measurable metabolites) and EChyd (the sum of all metabolites that can be hydrolyzed to ecgonine), may reduce uncertainty arising from variability in metabolite transformation and excretion, possibly to?≈?10 % RSD. This is more than a two-fold reduction relative to estimates derived from benzoylecgonine (>26 % RSD), and roughly equivalent to reported uncertainties from sources that are not metabolite-specific (e.g., sampling frequency, flow variability). They and other composite measurands merit consideration from the sewage epidemiology community, beginning with efforts to evaluate the stability of the total cocaine load under realistic sewer conditions.  相似文献   

7.
A former open pit where black shale (alum shale) was excavated during 1942–1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2–3.4 until 1997–1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6–7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.  相似文献   

8.
This work presents the structural and adsorption properties of the CaCO3 ?-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20 % was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R 2?>?0.98) than Freundlich (R 2?<?0.97).The correlation coefficient values (p?<?0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.  相似文献   

9.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   

10.
Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.  相似文献   

11.
Groundwater remediation was evaluated for combined autotrophic and heterotrophic denitrification under high (154 mg/L as CaCO3) and low (95 mg/L as CaCO3) alkaline conditions. Two levels of acetate (47 and 94 mg/L) and ethanol (24 and 48 mg/L) were added to the reactors. Obtained denitrification rates were 2.89, 2.58, 3.55, 1.96, and 2.0 mg-N/L?·?h for high alkaline conditions, whereas under low alkaline conditions has given 2.36, 1.94, 2.47, 2.74, and 2.29 mg-N/L?·?h for control, 47 and 94 mg/L acetate, and 24 and 48 mg/L ethanol, respectively. Nitrite was accumulated for controls but reactors with acetate and ethanol did not accumulate nitrite. Acetate and ethanol addition decreased sulfate to nitrate ratios in the range of 4.5–7.58 for high alkaline conditions (12.77 for control) and 4.43–6.78 for low alkaline conditions (7.90 for control). Acetate was more efficient compared with ethanol in controlling sulfate production and pH maintenance.  相似文献   

12.
Laboratory studies on Escherichia coli O157:H7 survival in soils from four different land use types: forest, tea plantation, bamboo grove, and vegetable garden were investigated at 25?±?1 °C with the field capacity (soil water content at ?33 kPa). Results showed that E. coli O157:H7 declined quickly in the test soils, but its survival dynamics varied in the soils under different land use types. The survival time needed to reach the detection limit (t d) in the test soils ranged from 2.1 to 3.6 days, with slightly longer t d values being observed in soils from the bamboo grove. Stepwise multiple regression analysis revealed that the t d values were shorter in sandy, lower pH, and lower organic carbon content soils. Different E. coli O157:H7 survival time in the soils under different land uses suggests that it is important to adapt proper management practices for reducing the potential risks of pathogen contamination when diary manure is applied to agricultural land.  相似文献   

13.
Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper >?>?zinc?>?tin?≈?nickel?>?lead?>?chromium >?>?TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (?0.10?K TS?相似文献   

14.
In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50 % decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L–1 for 72 h and 9.4–28.5 μg L–1 for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L–1 after 72 h. Inhibition rates was significantly increased with decreased water temperature (P?<?0.01). Intracellular H2O2 levels as an indicator of oxidative stress were also decreased with increasing temperature in both control and diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P?<?0.01). Our results suggest water temperatures may affect the toxicokinetics of diuron in freshwater and should therefore be considered in environmental risk assessment.  相似文献   

15.
The present study used an eco-ditch system that employed Eichhornia crassipes, Bacillus subtilis, and Bellamya aeruginosa (E–B–B) during the summer and fall (high temperature) seasons and a second eco-ditch system that employed Elodea nuttallii, a compound microbial preparation called “EM bacteria”, and Hypophthalmichthys molitrix (E–E–H) during the winter and spring (low temperature) seasons successively to purify the discharged wastewater produced by Chinese soft-shelled turtle greenhouse cultivation. The wastewater was sampled, and the dynamic changes in the major nutrient pollutant indicators over several months were analysed. After the E–B–B and E–E–H eco-ditch purification systems were operated for nearly 140 days each, the following results were observed: the total nitrogen (TN) removal rates in the wastewater were 75 % and 69 %, respectively; the total phosphorus (TP) removal rates were 82 % and 86 %, respectively; the NH4 +-N removal rates were 91 % and 75 %, respectively; the chemical oxygen demand (CODcr) decreased 54 % and 44 %, respectively; the dissolved oxygen (DO) contents increased nearly 3 to 4 times; and the wastewater was maintained at neutral or alkaline pH values. The wastewater physical traits gradually changed from being yellow, brown, and muddy to being pale yellow, slightly turbid, and odourless. Both eco-ditch systems were observed to have a relatively favourable effect on the purification of Chinese soft-shelled turtle aquaculture wastewater. The continuous use of both eco-ditch systems could result in a year-round purification effect on Chinese soft-shelled turtle greenhouse aquaculture wastewater; therefore, this method has good prospects for promotion and application.  相似文献   

16.
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for the removal of Cu(II), Fe(II), Mn(II), and Zn(II) from multielemental solutions and lake water, in batch processes. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and chemically modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). The results showed higher adsorption efficiency for MSB and either NLR or MLR. The maximum adsorption capacities (qmax) in multielemental solution for Cu(II), Fe(II), Mn(II), and Zn(II) were 35.86, 31.42, 3.33, and 24.07 mg/g for NLR; 25.36, 27.95, 14.06, and 6.43 mg/g for MLR; 0.92, 3.94, 0.03, and 0.18 mg/g for NSB; and 54.11, 6.52, 16.7, and 1.26 mg/g for MSB, respectively. The kinetic studies with chemically modified biomasses indicated that sorption was achieved in the first 5 min and reached equilibrium around 30 min. Sorption of Cu(II), Fe(II), Mn(II), and Zn(II) in lake water by chemically modified biomasses was 24.31, 14.50, 8.03, and 8.21 mg/g by MLR, and 13.15, 10.50, 6.10, and 5.14 mg/g by MSB, respectively. These biosorbents are promising and low costs agricultural residues, and as for lettuce roots, these showed great potential even with no chemical modification.  相似文献   

17.
The aim of this study was to assess the degradation and mineralization of hydroquinone (HQ) by the Fenton’s process in a bubble column reactor (BCR). The effect of the main operating variables, namely, air flow rate, effluent volume, hydrogen peroxide (H2O2) concentration, catalyst (Fe2+) dose, initial pH, and temperature, were assessed. For all air flow rates tested, no concentration gradients along the column were noticed, evidencing that a good mixing was reached in the BCR. For the best conditions tested ([H2O2] = 500 mg/L, [Fe2+] = 45 mg/L, T = 24 °C, Q air = 2.5 mL/min, pH = 3.0, and V = 5 L), complete HQ degradation was reached, with ~ 39% of total organic carbon (TOC) removal, and an efficiency of the oxidant use—η H2O2—of 0.39 (ratio between TOC removed per H2O2 consumed normalized by the theoretical stoichiometric value); moreover, a non-toxic effluent was generated. Under these conditions, the intermediates and final oxidation compounds identified and quantified were a few carboxylic acids, namely, maleic, pyruvic, and oxalic. As a strategy to improve the TOC removal, a gradual dosage of the optimal H2O2 concentration was implemented, being obtained ~ 55% of mineralization (with complete HQ degradation). Finally, the matrix effect was evaluated, for which a real wastewater was spiked with 100 mg/L of HQ; no reduction in terms of HQ degradation and mineralization was observed compared to the solution in distilled water.  相似文献   

18.
An effective dichloromethane (DCM) utilizer Methylobacterium rhodesianum H13 was isolated from activated sludge. A response surface methodology was conducted, and the optimal conditions were found to be 4.5 g/L Na2HPO4·12H2O, 0.5 g/L (NH4)2SO4, an initial pH of 7.55, and a temperature of 33.7 °C. The specific growth rate of 0.25 h?1 on 10 mM DCM was achieved, demonstrating that M. rhodesianum H13 was superior to the other microorganisms in previous investigations of DCM utilization. DCM mineralization paralleled the production of cells, CO2, and water-soluble metabolites, as well as the release of Cl?, whereas the carbon distribution and Cl? yield varied with DCM concentrations. The facts that complete degradation only occurred with DCM concentrations below 15 mM and repetitive degradation of 5 mM DCM could proceed for only three cycles were ascribed to pH decrease (from 7.55 to 3.02) though a buffer system was employed.  相似文献   

19.
In August 2012, eight rainwater samples were collected and analyzed for pH and metal ions, viz., iron, copper, and manganese. The pH was within the range 6.84–7.65. The rate of oxidation of dissolved sulfur dioxide was determined using these rainwater samples as reaction medium. Kinetics was defined by the rate law: ?d[S(IV)]/dt = R o = k o[S(IV)]], where k o is the first-order rate constant and R o is the rate of the reaction. The effect of two volatile organic compounds—ethanol and 2-butanol—was examined and found to inhibit the oxidation as defined by the rate law: k obs = k o/(1 + B [Inh]), where k obs is the first-order rate constant in the presence of the inhibitor, [Inh] is the concentration of the inhibitor, and B is the inhibitor parameter—an empirical constant. In the pH range of collected rainwater samples, the values of first-order rate constants ranged from 3.1?×?10?5 to 1.5?×?10?4 s?1 at 25 °C. The values of inhibition parameter were found to be (5.99?±?3.91?×?104) (ethanol) and (3.95?±?2.36)?×?104 (2-butanol) at 25 °C.  相似文献   

20.
The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm?3 phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45?×?10?3 and 20.12?×?10?3) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号