首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了提高活性炭吸附材料对非极性污染物的吸附性能,采用碱[(NaOH溶液)联合铜(Cu(CH3COO)2溶液]对珠状活性炭(beaded active carbon,BAC)进行改性,利用BET、SEM、Boehm滴定和FT-IR对改性前后的活性炭进行表征,并采用动态吸附法和Yoon-Nelson吸附理论模型研究了不同改性方法对活性炭吸附甲苯穿透曲线、饱和吸附量的影响及吸附机理.结果表明:改性后BAC表面不规则的孔隙增多,比表面积和微孔容积减少,平均孔径变化不显著,表面Cu含量明显升高;不同浓度碱铜联合改性后BAC对甲苯的吸附性能均提高,当NaOH溶液浓度为8 mol/L、Cu(CH3COO)2溶液质量分数为0.5%时,联合改性效果最好,此时改性后BAC对甲苯的饱和吸附量较改性前增加了50.9%,吸附穿透时间延长了342.9%,吸附平衡时间延长了77.4%.研究显示:较高浓度的碱联合较低浓度的铜溶液对活性炭改性,能显著提高吸附甲苯性能;改性后BAC对甲苯的吸附性能受自身孔隙结构和表面官能团的共同影响,且表面酸性官能团影响显著,表面金属铜与甲苯的结合作用是主要的吸附过程.   相似文献   

2.
刘寒冰  姜鑫  王新  杨兵  薛南冬  张石磊 《环境科学》2016,37(4):1287-1294
活性炭疏水性改性是提高其对含水VOCs选择性吸附的重要手段,然而这种改性方法对活性炭吸附不同VOCs的效果研究较少.采用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)对活性炭进行改性处理,并利用BET、Boehm滴定等方法对活性炭进行表征.采用动态吸附法,利用Yoon-Neslon吸附理论模型研究了不同相对湿度条件下,PDMS改性活性炭对VOCs(甲苯、苯、丙酮)吸附穿透曲线、饱和吸附量的影响及关键影响因素.结果表明:PDMS改性活性炭BET比表面积、微孔容积和表面酸碱官能团含量均有减少;经PDMS改性后,活性炭表面疏水性增大.动态吸附实验结果表明:PDMS改性前后活性炭吸附甲苯、苯、丙酮穿透曲线均符合Y-N模型;随着相对湿度增大,未经改性的活性炭(Bare-AC)对甲苯、苯和丙酮吸附速率降低、平衡吸附量减少,PDMS改性活性炭对甲苯、苯分子吸附速率和选择吸附能力提高,其中PDMS改性的活性炭(PDMS/AC-250)对甲苯、苯吸附量为相同条件下Bare-AC的1.86(甲苯)、1.92(苯)倍,但对丙酮分子提高不明显;结合表征结果分析,PDMS改性活性炭对VOCs分子吸附主要依靠化学吸附,同时与VOCs分子极性有关.  相似文献   

3.
VOCs气体在活性炭上的二元吸附过程研究   总被引:1,自引:1,他引:0  
采用穿透曲线法研究了4种VOCs在活性炭上的的二元吸附过程。研究表明:对于甲苯-苯、甲苯-丙酮、甲苯-乙酸乙酯、苯-丙酮、丙酮-乙酸乙酯二元吸附体系,吸附过程存在置换作用,即随着高沸点组分在床层内吸附量的逐渐增加,相对挥发性大的低沸点组分重新汽化而脱附,出现高沸点组分置换低沸点组分的现象,表现为被置换组分的穿透曲线上出现峰值。之后随着高沸点组分吸附趋于饱和,置换作用停止,低沸点组分吸附也趋于平衡。但对于沸点相近的苯-乙酸乙酯二元体系,吸附过程没有明显的置换现象。吸附量的计算结果表明,有机物在二元体系中的吸附量较同等条件时的单组分吸附量均有不同程度的降低,其中被置换组分降低程度较大,但总吸附量可近似按照浓度为二元组分总浓度低沸点组分的平衡吸附量的近似法计算,平均误差为7.9%。  相似文献   

4.
酸碱改性活性炭及其对甲苯吸附的影响   总被引:6,自引:1,他引:5  
刘寒冰  杨兵  薛南冬 《环境科学》2016,37(9):3670-3678
分别用酸溶液(H_2SO_4、HNO_3、H_3PO_4)和碱溶液(NaOH或NH_3·H_2O)浸渍方法对活性炭进行改性,并对酸改性活性炭进行碱溶液二次改性处理,通过表征改性前后活性炭BET比表面积、孔结构、表面官能团等理化特征和测定其对甲苯蒸气的饱和吸附量,研究了影响活性炭吸附甲苯蒸气的关键因素.结果表明,酸改性使BET比表面积、微孔面积、微孔容积减少、表面酸性官能团增加,而碱改性呈现相反的理化特征变化.活性炭理化特征的变化可能与改性溶液的酸碱性、氧化还原性有关,并且这种相反的变化直接关系到活性炭对甲苯蒸气的吸附.3种酸改性的活性炭对甲苯蒸气饱和吸附量相对于原活性炭减少9.6%~20.0%,而两种碱改性的活性炭则增加29.2%~39.2%.相关性分析显示甲苯吸附量与BET比表面积、微孔面积、微孔容积正相关,而与表面酸性官能团负相关;多元回归分析进一步表明微孔容积和酸性官能团数量是影响活性炭甲苯吸附的关键因素.二次改性活性炭甲苯吸附量与表面含氧酸性官能团拟合结果则表明,—COOH、C=O和—OH都对活性炭甲苯吸附能力有影响,其中—COOH影响较大.研究结果表明有效提高活性炭对甲苯吸附能力,改性宜以提高活性炭微孔容积和减小活性炭表面酸性官能团数量,特别是—COOH数量为目标导向.  相似文献   

5.
2种改性活性炭对甲苯吸附性能的对比研究   总被引:5,自引:3,他引:2  
利用微波、电炉加热对活性炭进行改性,并测定了改性前后不同种类活性炭对甲苯的吸附性能、表面酸碱官能团含量以及比表面积.结果表明,对于微波改性,随着改性温度升高,活性炭对甲苯的吸附量逐渐增大,表面碱性官能团含量也相应增加,比表面积相应减小.改性温度850℃时活性炭吸附甲苯性能最高,650℃与450℃改性后活性炭吸附甲苯的性能相差不大.电加热改性也具有类似的趋势,但对甲苯的吸附性能总体低于微波改性.扫描电镜表征显示,热改性去除了活性炭孔道内的杂质,使活性炭内部孔道更加通畅,有利于提高吸附甲苯的能力,但温度升高同样存在炭骨架收缩,孔道变窄的弊端.微波加热和电炉加热在原理和热传递方向上的不同.是导致改性结果之间差别的关键问题.  相似文献   

6.
研究了活性炭在酸(HNO3,H2SO4,HCI)和碱(NaOH,氨水)处理后对苯酚吸附性能的影响,测定了活性炭的亚甲基蓝值、碘值扣表面官能团等基本物理化学参数。研究发现:碱改性使活性炭上酸性官能团数量减少。碱性官能团增加,增强了活性炭对苯酚类疏水性物质的吸附客量。NaOH、氨水改性活性炭对苯酚的吸附值比未改性活性炭分别提高了56,70%和47.40%。  相似文献   

7.
汪莉  陈尧  蒋文举  雍晓蕾 《环境科学与技术》2011,34(11):118-121,129
文章对比研究了污泥活性炭(AC)和1%软锰矿改性的污泥活性炭(ACP)对溶液中Cu2+的吸附特性,考察了时间、pH值和吸附剂投加量等因素对吸附反应的影响。结果表明:室温下,180 min后Cu2+吸附达到平衡,pH=4.8时吸附效果最优;伪二阶动力学方程和Langmuir吸附等温方程能很好地拟合两种污泥活性炭的吸附反应。通过计算,室温下,改性前后的污泥活性炭Langmuir模型的饱和吸附量Qm分别是78.13 mg/g和94.34 mg/g。在初始浓度200 mg/L,pH=5,吸附剂投加量为2g/L时,1%软锰矿改性的污泥活性炭对Cu2+的最大吸附量为90.15 mg/g,比未改性时提高了23.33%。  相似文献   

8.
通过预处理、浸渍处理、改性液后处理等方式,研究开发出具有电化学反应性能的系列金属负载活性炭催化剂.分别将未改性和改性后的系列金属负载活性炭用于不同pH值下多种高浓度有机废水处理.试验结果表明,改性后的载铜及载铁活性炭催化剂经催化氧化反应后,处理出水中Cu2+离子和Fe2+离子的溶出量均可减少90%以上,苯胺及苯酚废水中COD的去除率可达50%~95%.大大提高了金属负载活性炭催化剂的稳定性,提高了催化剂的使用寿命,降低了废水处理成本.  相似文献   

9.
王红玉  羌宁  胡瑕 《环境科学》2011,32(12):3667-3672
以精密陶瓷制造过程中排放的甲苯和异丙醇混合气体为目标气体,采用4段活性炭吸附柱串联吸附实验方式研究了混合组分气体直接吸附分离回收的可行性.结果表明,异丙醇和甲苯这2种物性具有一定差异的物质在吸附床的长度方向存在明显的分层吸附现象.在表观气速0.42 m·s-1、异丙醇与甲苯入口浓度分别为477 mg·m-3和746 mg·m-3、吸附柱总长为26cm条件下,通气吸附798 min时,0~10 cm长度段炭层吸附甲苯量为184.5 mg·g-1,吸附异丙醇量为0 mg·g-1,而21~26 cm长度段炭层吸附甲苯量为0.92 mg·g-1,吸附异丙醇量为91.2 mg·g-1,通过分段再生回收分别得到了纯度99%以上的甲苯和异丙醇回收液.弱吸附质异丙醇在吸附过程中存在气相浓度增浓现象,该现象导致实验条件下部分活性炭层区域对异丙醇的吸附量提高了27%以上.通过多段串联吸附、分段再生回收的方式可以实现混合气体的直接吸附分离回收.  相似文献   

10.
有机酸-铁改性活性炭去除饮用水中的砷   总被引:1,自引:0,他引:1       下载免费PDF全文
利用有机酸(柠檬酸和EDTA)螯合铁加载来改性活性炭,采用动态活性炭小柱进行吸附穿透实验来检测改性后活性炭对砷的吸附能力.研究表明,加载到活性炭上的铁的量随着有机酸和铁浓度增加而增加,在EDTA和铁的浓度分别为0.1mol/L时,活性炭上的铁含量从未加载时的0.24%升至6.18%.改性后的活性炭对砷吸附能力有显著增加,EDTA-Fe改性后的活性炭对As(V)和As(III)穿透时,运行的床体积达到未改性活性炭的10倍.一般情况下,低pH对As(V)的吸附有利.在水体常见pH值范围内(pH 6~9),As(III)的吸附受到影响较小.活性炭上用有机酸螯合法加载的铁大部分以不定形的形式存在,且晶体化效果不明显.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

18.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

19.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号