首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Agricultural drought differs from meteorological, hydrological, and socioeconomic drought, being closely related to soil water availability in the root zone, specifically for crop and crop growth stage. In previous studies, several soil moisture indices (e.g., the soil moisture index, soil water deficit index) based on soil water availability have been developed for agricultural drought monitoring. However, when developing these indices, it was generally assumed that soil water availability to crops was equal throughout the root zone, and the effects of root distribution and crop growth stage on soil water uptake were ignored. This article aims to incorporate root distribution into a soil moisture‐based index and to evaluate the performance of the improved soil moisture index for agricultural drought monitoring. The Huang‐Huai‐Hai Plain of China was used as the study area. Overall, soil moisture indices were significantly correlated with the crop moisture index (CMI), and the improved root‐weighted soil moisture index (RSMI) was more closely related to the CMI than averaged soil moisture indices. The RSMI correctly identified most of the observed drought events and performed well in the detection of drought levels. Furthermore, the RSMI had a better performance than averaged soil moisture indices when compared to crop yield. In conclusion, soil moisture indices could improve agricultural drought monitoring by incorporating root distribution.  相似文献   

2.
Agricultural subsurface drains, commonly referred to as tile drains, are potentially significant pathways for the movement of fertilizers and pesticides to streams and ditches in much of the Midwest. Preferential flow in the unsaturated zone provides a route for water and solutes to bypass the soil matrix and reach tile drains faster than predicted by traditional displacement theory. This paper uses chloride concentrations to estimate preferential flow contributions to a tile drain during two storms in May 2004. Chloride, a conservative anion, was selected as the tracer because of differences in chloride concentrations between the two sources of water to the tile drain, preferential and matrix flow. A strong correlation between specific conductance and chloride concentration provided a mechanism to estimate chloride concentrations in the tile drain throughout the storm hydrographs. A simple mixing analysis was used to identify the preferential flow component of the storm hydrograph. During two storms, preferential flow contributed 11 and 51% of total storm tile drain flow; the peak contributions, 40 and 81%, coincided with the peak tile drain flow. Positive relations between glyphosate [N-(phosphonomethyl)glycine] concentrations and preferential flow for the two storms suggest that preferential flow is an important transport pathway to the tile drain.  相似文献   

3.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. The dominant soil within this field was Webster (fine-loamy, mixed, superactive, mesic Typic Endoaquolls) and cropping system was corn-soybean rotation. The model was calibrated with 1992 data and was validated with 1993 to 1997 data. Simulations of subsurface drainage flow closely matched observed data showing model efficiency of 99% (EF = 0.99), and difference (D) of 1% between measured and predicted data. The model simulated NO3-N losses with subsurface drainage water reasonably well with EF = 0.8 and D = 13%. The simulated corn grain yields were in close agreement with measured data with D < 10%. Nitrogen-scenario simulations demonstrated that corn yield response function reached a plateau when N-application rate exceeded 90 kg ha(-1). Fraction of applied N lost with subsurface drainage water varied from 7 to 16% when N-application rate varied from 30 to 180 kg ha(-1) after accounting for the nitrate loss with no-fertilizer application. These results indicate that the RZWQM has the potential to simulate the impact of N application rates on corn yields and NO3-N losses with subsurface drainage flows for agricultural fields in central Iowa.  相似文献   

4.
Rural areas represent approximately 95% of the 14000 km(2) Alabama Black Belt, an area of widespread Vertisols dominated by clayey, smectitic, shrink-swell soils. These soils are unsuitable for conventional onsite wastewater treatment systems (OWTS) which are nevertheless widely used in this region. In order to provide an alternative wastewater dosing system, an experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial. The experimental system that integrates a seasonal cropping system was evaluated for two years on a 500-m(2) Houston clay site in west central Alabama from August 2006 to June 2008. The SDI system was designed to start hydraulic dosing only when field moisture was below field capacity. Hydraulic dosing rates fluctuated as expected with higher dosing rates during warm seasons with near zero or zero dosing rates during cold seasons. Lower hydraulic dosing in winter creates the need for at least a two-month waste storage structure which is an insurmountable challenge for rural homeowners. An estimated 30% of dosed water percolated below 45-cm depth during the first summer which included a 30-year historic drought. This massive volume of percolation was presumably the result of preferential flow stimulated by dry weather clay soil cracking. Although water percolation is necessary for OWTS, this massive water percolation loss indicated that this experimental system is not able to effective control soil moisture within its monitoring zone as designed. Overall findings of this study indicated that soil moisture controlled SDI wastewater dosing is not suitable as a standalone system in these Vertisols. However, the experimental soil moisture control system functioned as designed, demonstrating that soil moisture controlled SDI wastewater dosing may find application as a supplement to other wastewater disposal methods that can function during cold seasons.  相似文献   

5.
ABSTRACT: Past historical evidence indicates that droughts have had great impacts on human life. Drought (or scarcity of water) is assessed based on two key factors, namely, the estimated water demand, and the expected water supply. The formulation of these key factors for a region largely depends on the agro-climatic and economic conditions. Consideration of one such key factor is the relationship between the crop yield and water deficit in the assessment and prediction of agricultural droughts. The varying nature of this relationship from crop to crop adds to the complexity of agricultural drought analysis. To overcome this difficulty in analyzing agricultural droughts of a region, it is adequate to consider and place emphasis on a single crop (i.e., an index crop) grown homogeneously over the major area of the region. From one year to another year, the pattern of water requirement during the growing season of an index crop is rather stationary, and the water supply in arid and semi-arid area is mainly from seasonal random precipitation. In a region, grain yield of the index crop and, in turn, assessment of the severity of drought can reasonably be predicted as a function of the time of crop sowing and the distribution of rainfall, provided that temporal and spatial effects of other contributing factors (crop variety, soil fertility status, crop disease, pest control, cultivation practices etc.) on grain yield are considered to be uniformly distributed (i.e., stable). A predictive method of assessing agricultural droughts in an arid area of western India is presented. The major crop (Pearl Millet) of this region is grown from. July through September. The formulation of the proposed predictive method inherently implies that the grain yield of the main crop is a reliable indicator of agricultural drought. In the development of this predictive relationship (i.e., a regression type model) a number of potential yet simple variables affecting the grain yield in the region were investigated. The soil moisture index, although generally considered significant compared to the simple variables, has been found to account for insignificant variation in the grain yield. Results of our investigations suggest that it would be advisable to exclude the soil moisture index variable from the model. The proposed regression model can be used in the prediction of grain yield of the main crop several months ahead of crop harvesting operations and, in turn, the assessment of agricultural drought severity as mild, moderate, or severe. Such an assessment is expected to be helpful to planners for arranging appropriate measures to effectively combat agricultural drought situations.  相似文献   

6.
Phosphorus exchangeability and leaching losses from two grassland soils   总被引:1,自引:0,他引:1  
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.  相似文献   

7.
A tracer study was initiated in November 1993 to investigate depression-focused recharge and to monitor solute movement through the vadose zone into the shallow ground water in southeastern North Dakota. Granular potassium chloride (KCl) was surface-applied to two areas overlying subsurface drains and to one area instrumented with soil solution samplers, ground water monitoring wells, time domain reflectometry (TDR) probes, and temperature probes. One of the subsurface drain tracer plots was located on level ground while the other two sites were in small topographic depressions. Formation of ground water mounds beneath the depressions indicated that these areas are recharge sites. The applied Cl- tracer was found to move rapidly to the shallow ground water under the depressional areas after infiltration of spring snowmelt in 1994. Excessive rainfall events were also responsible for focused recharge and the rapid transport of the applied Cl- tracer. Water flow through partially frozen soil at the bottom of the depressions during thaw enhanced preferential movement of the tracer.  相似文献   

8.
Meta-analysis of nitrogen removal in riparian buffers   总被引:3,自引:0,他引:3  
Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.  相似文献   

9.
Nitrate-nitrogen (NO?-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO?-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO?-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO?-N loss, but NO?-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO?-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO?-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.  相似文献   

10.
ABSTRACT Laboratory experiments were conducted to study effects of trickle emitter discharge rate on the distribution of soil moisture in a silty-clay loam soil. Both pulsed and continuous irrigation treatments were studied. A simulation model was used to evaluate the results obtained in the laboratory. The agreement between the predicted and measured soil moisture distribution patterns was quite good. For both pulsed and continuous applications, increasing trickle discharge rate resulted in a decrease in the horizontal component and an increase in the vertical component of the wetted soil profile. Compared to the continuous treatments, pulsed applications resulted in significant reduction in water loss below the root zone. Pulsed applications rates can replace continuous small discharge rates to reduce irrigation water runoff problems on heavy soils and with restricted infiltration allow the use of larger emitter orifices to decrease potential clogging of the trickle system.  相似文献   

11.
Riparian buffers can be effective at removing phosphorus (P) in overland flow, but their influence on subsurface P loading is not well known. Phosphorus concentrations in the soil, soil solution, and shallow ground water of 16 paired cropland-buffer plots were characterized during 2004 and 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loams (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that P availability (sodium acetate extractable-P) and soil-landscape variability would affect P release to the soil solution and shallow ground water. Results showed that P availability tended to be greater in crop fields relative to paired buffer plots. Soil P was a good indicator of soil solution dissolved (<0.45 microm) molybdate-reactive P (DRP) concentrations among plots, but was not independently effective at predicting ground water DRP concentrations. Mean ground water DRP in corn fields ranged from < or =20 to 80 microg L(-1), with lower concentrations in hay and buffer plots. More imperfectly drained crop fields and buffers tended to have greater average DRP, particulate (> or =0.45 microm) reactive P (PRP), and dissolved unreactive P (DUP) concentrations in ground water. Soil organic matter and 50-cm depth soil solution DRP in buffers jointly explained 75% of the average buffer ground water DRP variability. Results suggest that buffers were relatively effective at reducing soil solution and shallow ground water DRP concentrations, but their impact on particulate and organic P in ground water was less clear.  相似文献   

12.
Most studies of phosphorus (P) movement in soil have based their conclusions on patterns of extractable soil P as a function of depth, which has led to the assumption that no substantial leaching loss occurs because of high P-fixation capacity in mineral soils. Few studies have involved high-quality leachate samples collected below the root zone; rather, most have involved tile drainage systems. Equilibrium-tension lysimeters installed at a depth of 1.4 m were used to evaluate and compare P leaching from a restored tallgrass prairie and corn (Zea mays L.) agroecosystems on Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudoll) in southcentral Wisconsin during a 5-yr period. The corn agroecosystem treatments included nitrogen (N)-fertilized (f) or N-unfertilized (nf) and no-tillage (NT) or chisel-plowed (CP). Mean volume-weighted molybdate-reactive phosphorus (MRP) and total dissolved phosphorus (TDP) concentrations were similar within replicate samples, but always higher in NTf corn than in the prairie or CPf corn systems, though drainage from the CPf corn was always higher than from the NTf corn system. Water-extractable soil P concentrations at any given depth were not positively correlated with leachate concentrations, suggesting that macropore flow causes infiltrating runoff to preferentially bypass the bulk of the soil matrix. Leachate-P concentrations from the natural and managed agroecosystems exceeded 0.01 mg P L(-1) and leaching losses were significantly higher from N-fertilized corn, regardless of tillage, than from the prairie or N-unfertilized corn systems, from which leachate-P concentrations and loads were similar. Increased root growth from N fertilization could cause more macropore formation, preferential flow, and P mineralization from decaying roots compared with N-unfertilized systems, which could contribute to a N-fertilization effect on P leaching.  相似文献   

13.
The purpose of the study is to use soil particles labeled with the radioactive tracer cesium-134 (134Cs) as a method for studying soil erosion and sedimentation pattern within a small catchment with buffer zones. Cesium is adsorbed to soil particles, and by measuring changes in the 134Cs activity on the soil surface, erosion, sedimentation, and pathways for particles can be traced. A harrowed area was surface-contaminated with 134CsCl, while the buffer zone was left uncontaminated. A grid net in the tilled plot and buffer zone was established for in situ measurements of the 134Cs activity after major runoff events from October 1993 to May 1996. In addition, 134Cs activity and suspended solids in runoff were followed during the events. At the end of the experiment, the vertical distribution of 134Cs in soil profiles and uptake of 134Cs in vegetation within the buffer zone were determined. At the end of the experiment, about 54% of the applied tracer remained at the soil surface. Surface soil erosion occurred relatively uniformly across the hillslope due to sheet flow. Most of the tracer was transported vertically into the soil profile, probably during the first heavy rainfall 3 wk after application when the soil was newly tilled. Sedimentation occurred in the upper part of the buffer zone. The correlation between suspended particles in runoff and 134Cs activity was good (R2=0.76). The study also demonstrates the benefit of utilizing 134Cs2+ tracer for investigating transport pathways for contaminated partic1les within a hillslope system without disturbing the surface soil system.  相似文献   

14.
Short‐term agricultural drought and longer term hydrological drought have important ecological and socioeconomic impacts. Soil moisture monitoring networks have potential to assist in the quantification of drought conditions because soil moisture changes are mostly due to precipitation and evapotranspiration, the two dominant water balance components in most areas. In this study, the Palmer approach to calculating a drought index was combined with a soil water content‐based moisture anomaly calculation. A drought lag time parameter was introduced to quantify the time between the start of a moisture anomaly and the onset of drought. The methodology was applied to four shortgrass prairie sites along a North‐South transect in the U.S. Great Plains with an 18‐year soil moisture record. Short time lags led to high periodicity of the resulting drought index, appropriate for assessing short‐term drought conditions at the field scale (agricultural drought). Conversely, long time lags led to low periodicity of the drought index, being more indicative of long‐term drought conditions at the watershed or basin scale (hydrological drought). The influence of daily, weekly, and monthly time steps on the drought index was examined and found to be marginal. The drought index calculated with a short drought lag time showed evidence of being normally distributed. A longer data record is needed to assess the statistical distribution of the drought index for longer drought lag times.  相似文献   

15.
Abstract: Development of any numerical ground‐water model is dependent on hydrogeologic data describing the subsurface. These data are obtained from geologic core analyses, stratigraphic analyses, aquifer performance tests, and geophysical studies. But typically in remote areas, these types of data are very sparse and site‐specific in terms of the aerial extent of the resource to be modeled. Uncertainties exist as to how well the available data from a few locations defines a heterogeneous surficial aquifer such as the Biscayne Aquifer in Miami‐Dade County, Florida. This is particularly the case when an exceptionally conductive horizontal flow zone is detected at one site due to specialized testing that was not historically conducted at the other at sites that provided data for the model. Not adequately accounting for the potential effect of the high flow zone in the aquifer within a ground‐water numerical model, even though the zone may be of very limited thickness, might underpredict the well field protection capture boundaries. Applied Stochastic ground‐water modeling in determining well field protection zones is steadily becoming important in addressing the uncertainty of the hydrogeologic subsurface parameters, specifically in karstic heterogeneous aquifers. This is particularly important in addressing the uncertainty of a 60‐day travel time capture zone in the Northwest Well Field, Miami‐Dade County, where a predominantly high flow zone controls much of the flow in the production wells. A stochastic ground‐water modeling application along with combination of pilot points and regularization technique is presented to further consolidate the uncertainty of the subsurface.  相似文献   

16.
ABSTRACT: Soil water potentials, slope throughflow, runoff chemistry, and isotopic composition were monitored in a 97 m2 zero-order basin within the Maimai 8 watershed on the South Island of New Zealand, for a natural rain storm and two artificial water applications. Contrary to results previously reported for other portions of the Maimai catchment, much of the runoff occurred as a shallow subsurface organic layer flow. For the 47 mm natural rain event, pre-storm soil matric potential ranged from ?60 to ?150 cm H2O. No saturation was produced within the profile, and the majority of storm runoff emanated from flow within the organic horizon perched on the mineral soil surface. Hillslope applications corroborated this interpretation by showing >90 percent new water flushing with negligible mineral soil moisture response. Although the mechanisms cited in the text are not representative of the entire catchment, the study demonstrates: (1) the value of a combined physical-chemical-isotopic approach in quantifying slope processes, and (2) the heterogeneous nature and diversity of slope runoff pathways in a relatively homogeneous catchment.  相似文献   

17.
This study describes soil water repellency developed under prolonged irrigation with treated sewage effluent in a semiarid environment. Soil surface layer (0-5 cm) and soil profile (0-50 cm) transects were sampled at a high resolution at the close of the irrigation season and rainy winter season. Samples from 0- to 5-cm transects were subdivided into 1-cm slices to obtain fine scale resolution of repellency and organic matter distribution. Extreme to severe soil water repellency in the 0- to 5-cm soil surface layer persisted throughout the 2-yr study period in the effluent-irrigated Shamouti orange [Citrus sinensis (L.) Osbeck cv. Shamouti] orchard plot. Nearby Shamouti orange plots irrigated with tap water were either nonrepellent or only somewhat repellent. Repellency was very variable spatially and with depth, appearing in vertically oriented "repellency tongues." Temporal and spatial variability in repellency in the uppermost 5-cm soil surface layer was not related to seasonality, soil moisture content, or soil organic matter content. Nonuniform distribution of soil moisture and fingered flow were observed in the soil profile after both seasons, demonstrating that the repellent layer had a persistent effect on water flow in the soil profile. A lack of correlation between bulk density and volumetric water content in the soil profile demonstrates that the observed nonuniform spatial distribution of moisture results from preferential flow and not heterogeneity in soil properties. Soil water repellency can adversely affect agricultural production, cause contamination of underlying ground water resources, and result in excessive runoff and soil erosion.  相似文献   

18.
During recent decades, a change in land use in the mountainous regions of Northern Thailand has been accompanied by an increased input of agrochemicals. We identified lateral water flow and pesticide transport pathways and mechanisms in a Hapludult on a sloped litchi orchard in Northern Thailand. During two rainy seasons, two micro-trench experiments were performed at the plot scale (2 by 3 m). The first experiment was performed at the footslope of the orchard; the second was performed at a midslope position. Two salt tracers (bromide and chloride) and two pesticides {methomyl [S-methyl-N-(methylcarbamoyloxy)thioacetimidate] and chlorothalonil (2,4,5,6-Tetrachlor-1,3-benzdicarbonitril)} were applied in stripes parallel to the slope 150 and 300 cm away from the trench. At the trench, soil water was collected by wick samplers. Tensiometers and time-domain reflectometry probes were installed. At the end of the experiment, soil samples were taken and analyzed for residual concentrations of tracers and pesticides. Lateral subsurface flow of water occurred exclusively along preferential flow paths and was mainly observed at 0- to 30- and 60- to 90-cm depth. Lateral transport of pesticides was negligible, but both pesticides were found beneath the application area at 90 cm depth. Therefore, they may pose a groundwater contamination risk. The amount of wick flow and the location of interflow were mainly a function of rain amount and antecedent soil water suction. During dry periods, water flow was restricted to the topsoil. After heavy rain events and wet periods, interflow was mainly observed in the subsoil. The cumulative rain amount between samplings necessary to induce interflow was 20 mm. At the footslope, the interflow was seven times higher, and the network of water-bearing pores increased compared with the midslope position.  相似文献   

19.
Topographically heterogeneous agricultural landscapes can complicate and accelerate agrochemical contamination of streams due to rapid transport of water and chemicals to poorly drained lower-landscape positions and shallow ground water. In the semiarid Palouse region, large parts of these landscapes have been tile drained to enhance crop yield. From 2000-2004 we monitored the discharge of a tile drain (TD) and a nearby profile of soil water for nitrate concentration ([NO(3)]), electrical conductivity level (EC), and water content to develop a conceptual framework describing soil nitrate occurrence and loss via subsurface pathways. Tile-drain baseflow [NO(3)] was consistently 4 mg N L(-1) and baseflow EC was 200 to 300 microS cm(-1). Each year sudden synoptic increases in TD discharge and [NO(3)] occurred in early winter following approximately 150 mm of fall precipitation, which saturated the soil and mobilized high-[NO(3)] soil water throughout the profile. The greatest TD [NO(3)] (20-30 mg N L(-1)) occurred approximately contemporaneous with greatest TD discharges. The EC decrease each year (to approximately 100 microS cm(-1)) during high discharge, a dilution effect, lagged approximately 1 mo behind the first appearance of high [NO(3)] and was consistent with advective transport of low-EC water from the shallow profile under saturated conditions. Water-budget considerations and temporal [NO(3)] patterns suggest that these processes deliver water to the TD from both lower- and upper-slope positions, the latter via lateral flow during the high-flow season. Management practices that reduce the fall reservoir of soil nitrate might be effective in reducing N loading to streams and shallow ground water in this region.  相似文献   

20.
Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号