首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以磷酸钠为电解液,采用微弧氧化技术在钛片上直接制备TiO2膜,利用溶胶-凝胶法和硝酸铁掺杂方法对该膜表面进行修饰处理,以罗丹明B溶液模拟废水来评价TiO2膜光催化降解水中有机污染物的能力。利用EDX对微弧氧化膜表面成分进行分析。实验结果表明:微弧氧化TiO2膜具有一定的光催化活性。溶胶-凝胶法负载TiO2且硝酸铁掺杂处理后可以使铁离子进入微弧氧化TiO2负载膜,改善膜的光催化性能。溶胶-凝胶法负载TiO2膜对废水的光催化降解效率由13.8%提高到42.5%;铁离子掺杂1%可以使负载TiO2膜对废水的光催化效率由42.5%提高到68.9%。  相似文献   

2.
目的 研究N36锆合金表面纳米化层的形貌和微观结构,分析表面纳米化层的微动腐蚀机理。方法 采用超声表面滚压技术(USRP)对锆合金进行表面纳米化处理,研究不同滚压速度对表面纳米化层形貌、相组成、粗糙度、显微硬度、电化学腐蚀和微动腐蚀行为的影响。结果 USRP处理后,锆合金表面有明显的塑性变形痕迹,致使锆合金表面发生加工硬化,提高了表面的硬度。锆合金的腐蚀电流密度相较于基体更低,最大磨损深度和磨损率均低于基体。结论 USRP处理后的锆合金晶粒细化、晶界增多,提高了锆合金的表面活性,有利于钝化膜的形成。锆合金的磨损机理为氧化磨损和磨粒磨损的共同作用。  相似文献   

3.
目的探究三种电源模式对ADC12高硅铝合金微弧氧化膜层性能的影响,从中选择对其微弧氧化膜层性能较优的电源模式。方法在三种不同电源模式(交流电源、单极性脉冲电源和双极性脉冲电源)的条件下,应用微弧氧化(MAO)技术在ADC12高硅铝合金表面制备了陶瓷膜层,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验机等手段表征ADC12铝合金微弧氧化膜层的显微组织与性能。结果三种电源模式下微弧氧化膜层中都存在α-Al_2O_3、γ-Al_2O_3和Al9Si等物相;双脉冲模式下制备的微弧氧化膜层的致密性最好,厚度为15μm,硬度达到719 HV,摩擦系数为1.2左右,膜层与基体开始脱落的载荷为25.8 N。交流模式下制备的微弧氧化膜层膜厚较低,厚度为9μm,硬度达到698 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为19.5 N。单极性模式下制备的微弧氧化膜层厚度为17μm,但硬度为706 HV,摩擦系数为1.35左右,膜层与基体开始脱落的载荷为13.09 N。结论通过三种电源模式的比较,ADC12高硅铝合金在双极性脉冲电源模式下制得膜层的综合性能较好。  相似文献   

4.
铝合金微弧氧化技术应用研究   总被引:7,自引:1,他引:6       下载免费PDF全文
杨钿  周隆先 《装备环境工程》2013,10(6):131-135,151
目的研究铝合金微弧氧化技术在产品三防方面的应用。方法选取四种不同牌号的常用铝合金结构件材料进行微弧氧化处理,并通过各种检测手段测定铝合金微弧氧化膜层的成分及形貌、硬度及耐磨、耐腐蚀等性能指标,并与硬质阳极氧化技术作对比。结果微弧氧化膜层厚度为20~120μm,氧化膜致密层硬度(Hv)〉900,致密层磨损率〈10^-4mm^3/(N·m),盐雾试验时间〉96h,湿热试验时间〉10个周期,膜层性能优于硬质阳极氧化膜。结论微弧氧化技术能大大提高铝合金的耐磨和耐腐蚀性能,可应用于提升产品三防性能。  相似文献   

5.
目的 研究7050铝合金硬质阳极氧化膜在热带海洋大气环境下的耐蚀性能变化规律。方法 在7050铝合金表面制备硬质阳极氧化膜,然后采用不封闭、沸水封闭与铬酸盐封闭3种后处理方式进行处理。采用实验室多因素组合循环模拟试验方式与热带海洋大气环境户外直接暴露对试样开展耐蚀性能试验。通过外观、极化曲线、电化学阻抗谱方法,分析其耐蚀性能变化规律。结果 硬质阳极氧化膜不封闭处理的耐蚀性较差,实验室多因素组合循环试验第1循环后表面就出现白色腐蚀产物,评级为5/2xA。户外暴露试验12个月后,不封闭处理膜层的自腐蚀电位为?814.88 mV,自腐蚀电流密度为0.307µA/cm2;沸水封闭膜层的自腐蚀电位为?717.86 mV,自腐蚀电流密度为0.177 µA/cm2;重铬酸盐封闭膜层的自腐蚀电位为?703.33 mV,自腐蚀电流密度为3.82×10?2 µA/cm2。户外暴露12个月后,不封闭处理、沸水封闭处理与重铬酸盐封闭处理膜层在0.01 Hz的阻抗模值分别为1.04×105、1.51×105、4.76×105 Ω.cm2。结论 封闭处理能提升7050铝合金硬质阳极氧化膜的耐蚀性能,且重铬酸盐封闭后的耐蚀性能优于沸水封闭后的耐蚀性能。  相似文献   

6.
微弧氧化6061铝合金的腐蚀行为研究   总被引:6,自引:1,他引:5  
采用室内海水浸泡试验、电偶试验等方法研究了6061铝合金微弧氧化层厚度和封孔处理对其耐海水腐蚀性能的影响。试验发现,微弧氧化后,铝合金在海水中的腐蚀形貌为点蚀,封孔处理可明显抑制点蚀的发生,厚度变化对耐蚀性影响不大。与铜合金偶合后,微弧氧化铝合金的腐蚀速率增加,因此在实际使用中应尽量避免这2种材料的电接触。  相似文献   

7.
目的 采用化学复合镀技术对微弧氧化进行封孔,进而得到抗烧蚀性能优良的Al2O3/Ni-P-SiC复合涂层。方法 通过采用扫描电镜(SEM)、光学金相显微镜(OM)、显微硬度仪(Microhardness Tester)、X射线衍射仪(XRD)、氧–乙炔烧蚀试验(Oxy-Acetylene Ablation Test)等方法,对复合涂层的表面形貌、截面形貌、厚度、显微硬度、物相和抗烧蚀性能等进行分析。结果 陶瓷层原始表面完全被化学镀层覆盖,所制得的复合涂层厚度均匀,化学镀层与陶瓷层紧密嵌合。镀液中的SiC浓度对镀覆的速度、镀层中SiC粒子的共沉积量有着较大的影响。当粒子质量浓度为16~20 g/L时,颗粒的共沉积量较大。化学复合镀60 min可以得到厚度20 μm左右的Ni-P-SiC镀层,SiC颗粒分布均匀。当镀液中SiC质量浓度为16 g/L时,镀层具有最高的硬度。对比未处理、仅微弧氧化和Al2O3/Ni-P-SiC复合涂层试样,Al2O3/Ni-P-SiC复合涂层试样具有最佳的抗烧蚀性能。结论 Al2O3/Ni-P-SiC复合涂层均匀、致密,具有良好的抗烧蚀。  相似文献   

8.
目的 对比3D打印铝合金液冷板材料经不同表面处理后在冷却液中的静态腐蚀情况,并预测静态腐蚀速率。方法 通过pH值测试、腐蚀表面形貌分析来监测冷却液和铝合金的变化,通过电化学方法测试样件的腐蚀动力学参数,通过质量损失试验测量材料的腐蚀速率和年腐蚀深度,通过EDS分析腐蚀产物。结果 所有试验组冷却液pH均整体呈下降趋势。在试样表面可以观测到明显的腐蚀现象,集中发生于试样表面的缺陷位置。不同表面处理的样件,其腐蚀速率不同,差异最大可达16倍。冷却液中的有效缓蚀成分参与了试样表面腐蚀产物膜的形成,在表面沉积了P、Ca等元素。结论 3D打印成形铝合金材料在冷却液中的年腐蚀深度整体较小,其耐蚀性良好,进行液态磨粒抛光或酸洗处理能降低研究材料在冷却液中的静态腐蚀速率。  相似文献   

9.
2A12合金微弧氧化工艺因素的影响研究   总被引:5,自引:0,他引:5  
针对2A12铝合金开展微弧氧化工艺研究,通过正交试验设计,从微观形貌、显微硬度、元素组成和相组成等方面分析了各因素对微弧氧化陶瓷膜性能的影响,并优化了2A12铝合金微弧氧化的工艺参数。结果表明,在Na2SiO3+KOH+添加剂的电解液中,影响2A12铝合金微弧氧化陶瓷膜综合性能的各因素显著顺序为:氧化时间〉电流密度〉频率〉KOH含量〉Na2SiO3含量〉添加剂含量;在优选工艺条件下制备的陶瓷膜层厚度可达120μm以上,致密层的显微硬度HV最高达1800以上。  相似文献   

10.
叙述了气垫船减速齿轮箱在海洋大气和海水溅射环境下腐蚀与防护工艺的研究进展。介绍了气垫船减速齿轮箱长期处于高温、高湿、高盐雾以及海水溅射环境下的腐蚀特征和主要腐蚀类型,总结了减速齿轮箱中铝合金、合金钢、不锈钢等不同材质零件腐蚀防护技术的研究进展。最后,提出了海洋环境下气垫船减速齿轮箱的腐蚀防护需从结构设计、材料选型、加工制造、运输贮存、维护保养等方面着手,在充分利用现有表面处理技术的基础上,加强阳极氧化、微弧氧化、电镀、涂料涂层等技术的组合;强化腐蚀监测技术,有效预警防护层失效,同时大力研发海洋环境下长期有效、绿色环保的表面处理和涂层技术。另外,采用系统工程来提高海洋环境下金属材料的环境适应性,进而提高减速齿轮箱等部件的可靠性和安全性。  相似文献   

11.
介绍了当前国际化学危险品的各种分类体系,对比了GHS与TDG、EU_CLP、DOT、WHMIS等对化学危险品的具体分类。有助于GHS的理解与掌握,全面推进GHS在我国的实施。  相似文献   

12.
刘绮 《重庆环境科学》2000,22(5):21-23,27
以某区域水环境-经济系统为研究实例,寻求值-排污-水质综合协调解方法,寻求净收益最大时的总体规划方案。建立目标参数规划模型,寻求不同生产规模条件下的产值-排污-水质协调解,又探讨了水环境标准约束下的某化工区废水治理费用的计算方法,提出了以供决策者选择的方案。  相似文献   

13.
滇池富营养化特性评价   总被引:2,自引:0,他引:2  
刘雪亭 《云南环境科学》2005,24(Z1):134-135
介绍了滇池水质状况,对滇池富营养化特性进行了分析和评价,并提出了对策.  相似文献   

14.
土壤整体质量的生态毒性评价   总被引:10,自引:2,他引:8  
土壤样品采自沈阳西部污灌区 .进行了污染物 (重金属和矿物油 )含量分析和生态毒性试验 .重金属采用原子吸收分光光度仪测定 ,矿物油采用紫外分光光度计测定 .生态毒性试验分别参照国际标准组织 (ISO)和OECD指南 ,进行了植物毒性试验、蚯蚓毒性试验和蚕豆根尖微核试验 .植物试验以小麦种子发芽根伸长抑制率为试验终点 ,试验周期50h ,蚯蚓毒性试验以蚯蚓死亡率、体重增长抑制率为试验终点 ,试验周期28d .土壤中矿物油含量在145mg/kg~1121mg/kg ,重金属Cd为0.34mg/kg~1.81mg/kg .土壤对植物和蚯蚓显示不同程度的毒性效应 ,土壤的蚕豆根尖微核率明显高于对照 .种子发芽根伸长抑制率为2.0%至-35.1% ,蚯蚓死亡率为0%~40%.体重增长抑制率由14d的-2.3%~-19.4%在28d增加到-2.1%~10.7% ,蚕豆根尖微核率最高达6.62/100.研究表明 ,土壤中的污染物积累较低 ,但具有明显的生态毒性 .  相似文献   

15.
对乌海市《城市区域环境噪声标准》适用区域进行了划分,以乌海市2011年城区环境噪声监测统计数据为基础,分析了乌海市暴露在不同等效声级下的城区面积分布状况和达标情况。  相似文献   

16.
后勤装备防腐涂层加速试验环境谱研究   总被引:2,自引:1,他引:1  
结合后勤装备服役特点,综合考虑亚热带沿海地区湿热、紫外光照、盐雾等主要腐蚀因素的影响,建立了适用于后勤装备表面涂层的加速试验环境谱,给出了各环境块的具体确定方法,并且提出了建立加速谱与装备实际使用环境的当量加速关系的方法。为后勤装备外露关键部位涂层使用寿命评定、涂层有效性检验和腐蚀修理方案制定提供了重要的依据。  相似文献   

17.
烟气脱硫副产物的综合利用   总被引:11,自引:1,他引:11  
通过分析烟气脱硫石膏的性能 ,介绍了脱硫石膏的利用情况和研究进展 ,利用脱硫石膏生产建筑材料 ,如 β石膏和α石膏的工艺日臻成熟 ,利用脱硫石膏生产水泥辅料已进入工业化 ,而利用脱硫石膏生产充填尾砂胶结剂已经完成试验阶段 ,脱硫石膏在农业上也有很广泛的用途。  相似文献   

18.
生态保护地协同管控成效评估   总被引:3,自引:2,他引:3  
分区分类管理是我国生态保护的重要管控制度,生态保护地是事关国家生态安全的关键区域,开展生态保护地保护成效评估及不同类型生态保护地之间的协同管控成效评估具有重要意义。以吉林省自然保护地和重点生态功能区等生态保护地(即禁止开发区和限制开发区)为研究对象,以重要生态空间、植被生态、水源涵养功能为主要内容,基于“禁止开发区—限制开发区—省域”的管控梯度差异,评估分析了生态保护地的协同管控成效。结果表明:(1)从重要生态空间协同管控成效来看,自然保护地的重要生态空间面积比例最高、人类活动干扰指数最低,这与生态保护管控严格程度呈现很好地正相关。但是1980—2015年间重要生态空间面积比例均有所减少,减少幅度与管控严格程度没有表现出正相关。(2)从植被生态协同管控成效来看,植被覆盖总体呈现出自东向西逐步降低的特点,与东部分布有重点生态功能区和森林类自然保护区、西部分布较多的湿地类自然保护地的空间特征一致。但是,由于湿地及水域类型自然保护地面积占比较高,且分布在吉林西部草原和平原区的面积比例较高,自然保护地的年际变化较大、且植被覆盖稳定度低于重点生态功能区。(3)从水源涵养功能协同管控成效来看,水源涵养能力呈现出东部和西部高、中部低的特点,与这两个区域主要分布有森林、草地和湿地等重要生态空间密切相关,也与分布着大面积的重点生态功能区和各类自然保护地密切相关。自然保护区的水源涵养能力最高,且年际变化最小、稳定性最高。  相似文献   

19.
氯苯类化合物的生物降解   总被引:41,自引:6,他引:35  
经过2个月的驯化,从某染料厂和某毛纺厂活性污泥中分离出能够生长于1,4-二氯苯、1,2,4-三氯苯和六氯苯的4种微生物.通过测定该混合菌降解氯苯类化合物过程中的累积好氧量、微生物生长曲线及降解产物Cl-的释放,证明在好氧条件下该混合菌能够以1,4二氯苯和1,2,4-三氯苯为唯一碳源和能源,降解产物Cl-浓度的变化与微生物生长周期有关.通过好氧振荡瓶培养法测得3种氯苯的生物降解顺序为:1,4-二氯苯[356.7μg/(L·d)]>1,2,4-三氯苯[110.4μg/(L·d)]>六氯苯[~6μg/(L·d)],说明氯取代数越多,氯苯类化合物越难被好氧降解.  相似文献   

20.
异烟酸—吡唑啉酮分光光度法在实际应用中稳定性较差,通过对显色反应条件的试验,以及对其他影响因素的分析,探索测定了反应的最佳条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号