首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract:  Coffee agroecosystems have recently undergone a dramatic intensification in Colombia, a megadiverse country, especially in terms of the nature of shade cover. We tested for changes in the composition, ecological associations, and diversity of ants (Hymenoptera: Formicidae) along a gradient of intensification of coffee production in the Colombian Andes. We surveyed 16 farms in two regions, classified into four management types: (1) forest (no agriculture), (2) organic polygeneric shaded coffee, (3) monogeneric shaded coffee, and (4) sun coffee (unshaded). Forty sampling units (20 1-m2 plots on the ground and 20 coffee bushes) were established at each farm between 2001 and 2002. We sampled with a mini-winkler litter extraction technique and through visual searching. Organic polygeneric shaded-coffee plantations contained significantly higher ant species richness, and their ant assemblages resembled the forest patches more than any other management type. The number of statistically significant associations among ant species dropped with production intensification, as did the number of ant species involved in such associations. The network of ant associations in shaded systems transformed into an extremely simplified network in sun coffee, with a few dominant ants extending almost entirely throughout the crop. Intensification of coffee agriculture not only caused loss of litter ant species (especially forest species) but also a reduction in the complexity of the ant assemblage in the leaf litter of this agroecosystem.  相似文献   

2.
Tack AJ  Ovaskainen O  Pulkkinen P  Roslin T 《Ecology》2010,91(9):2660-2672
Recent work has shown a potential role for both host plant genotype and spatial context in structuring insect communities. In this study, we use three separate data sets on herbivorous insects on oak (Quercus robur) to estimate the relative effects of host plant genotype (G), location (E), and the G x E interaction on herbivore community structure: a common garden experiment replicated at the landscape scale (approximately 5 km2); two common gardens separated at the regional scale (approximately 10 000 km2); and survey data on wild trees in various spatial settings. Our experiments and survey reveal that, at the landscape scale, the insect community is strongly affected by the spatial setting, with 32% of the variation in species richness explained by spatial connectivity. In contrast, G and G x E play minor roles in structuring the insect community. Results remained similar when extending the spatial scale of the study from the more local (landscape) level to the regional level. We conclude that in our study system, spatial processes play a major role in structuring these insect communities at both the landscape and regional scales, whereas host plant genotype seems of secondary importance.  相似文献   

3.
Advances in pollination ecology from tropical plantation crops   总被引:3,自引:0,他引:3  
Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.  相似文献   

4.
Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.  相似文献   

5.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

6.
Abstract:  Many tropical forests have been converted for agri- or silviculture or a combination of both (agroforestry). Conservation at a landscape scale requires an understanding of the distribution and abundance of native biodiversity in these converted natural ecosystems, of which the knowledge is especially poor for African agroecosystems. We compared species density and species composition of four plant groups (trees and shrubs, epiphytic vascular plants, mosses, and liverworts) among three arboreal land-use types in southwestern Ethiopia (montane rainforest fragments, shade-tree coffee home gardens, and exotic tree plantations). Species density was significantly higher in forests than in coffee home gardens for all plant groups and in exotic tree plantations for all groups except mosses. Home gardens had more vascular epiphytic species than plantations, whereas the reverse was true for mosses and liverworts. The species composition of the forest plots was sometimes more similar to home-garden plots than plantation plots and sometimes vice versa. Fifteen forest plots had, however, cumulatively more species than a random selection of 15 nonforest (coffee home garden and plantation) plots, even if the 2 plot types complemented each other in terms of habitats for forest plants. Tree plantations dominated by Eucalyptus had many small trees and shrubs in common with forests, whereas plantations with Cupressus were important substrates for forests mosses and liverworts. Our results illustrate the importance of undisturbed forests habitats for conservation of species at a landscape scale and that different human-made land-use types may complement each other in their capacity as additional habitats for forest species.  相似文献   

7.
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land‐sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land‐sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small‐scale, land‐sparing coffee‐production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest‐dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well‐defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large‐scale land‐sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land‐use patterns. Un Método para Reservar Tierras a Pequeña Escala para Conservar la Biodiversidad en Paisajes Agrícolas Tropicales  相似文献   

8.
Pattern-oriented modeling of bird foraging and pest control in coffee farms   总被引:1,自引:0,他引:1  
We develop a model of how land use and habitat diversity affect migratory bird populations and their ability to suppress an insect pest on Jamaican coffee farms. Bird foraging—choosing which habitat patch and prey to use as prey abundance changes over space and time—is the key process driving this system. Following the “pattern-oriented” modeling strategy, we identified nine observed patterns that characterize the real system's dynamics. The model was designed so that these patterns could potentially emerge from it. The resulting model is individual-based, has fine spatial and temporal resolutions, represents very simply the supply of the pest insect and other arthropod food in six habitat types, and includes foraging habitat selection as the only adaptive behavior of birds. Although there is an extensive heritage of bird foraging theory in ecology, most of it addresses only the individual level and is too simple for our context. We used pattern-oriented modeling to develop and test foraging theory for this across-scale problem: rules for individual bird foraging that cause the model to reproduce a variety of patterns observed at the system level. Four alternative foraging theories were contrasted by how well they caused the model to reproduce the nine characteristic patterns. Four of these patterns were clearly reproduced with the “null” theory that birds select habitat randomly. A version of classical theory in which birds stay in a patch until food is depleted to some threshold caused the model to reproduce five patterns; this theory caused lower, not higher, use of habitat experiencing an outbreak of prey insects. Assuming that birds select the nearby patch providing highest intake rate caused the model to reproduce all but one pattern, whereas assuming birds select the highest-intake patch over a large radius produced an unrealistic distribution of movement distances. The pattern reproduced under none of the theories, a negative relation between bird density and distance to trees, appears to result from a process not in the model: birds return to trees at night to roost. We conclude that a foraging model for small insectivorous birds in diverse habitat should assume birds can sense higher food supply but over short, not long, distances.  相似文献   

9.
Widespread loss of primary habitat in the tropics has led to increased interest in production landscapes for biodiversity conservation. In the Western Ghats biodiversity hotspot in India, shade coffee plantations are located in close proximity to sites of high conservation value: protected and unprotected forests. Coffee is grown here under a tree canopy that may be dominated by native tree species or by nonnative species, particularly silver oak (Grevillea robusta). We investigated the influence of properties at the local scale and the landscape scale in determining bird communities in coffee plantations, with particular emphasis on species of conservation priority. We used systematic point counts in 11 coffee plantation sites and analyzed data in a randomized linear modeling framework that addressed spatial autocorrelation. Greater proportion of silver oak at the local scale and distance to contiguous forests at the landscape scale were implicated as factors most strongly driving declines in bird species richness and abundance, while increased basal area of native tree species, a local-scale variable, was frequently related to increased bird species richness and abundance. The influence of local-scale variables increased at greater distances from the forest. Distance to forests emerged as the strongest predictor of declines in restricted-range species, with 92% reduction in the abundance of two commonly encountered restricted-range species (Pompadour Green Pigeon and Yellow-browed Bulbul) and a 43% reduction in richness of bird species restricted to Indian hill forests within 8 km of forests. Increase in proportion of silver oak from 33% to 55% was associated with 91% reduction in the abundance of one commonly encountered restricted-range species (Crimson-fronted Barbet). One conservation strategy is providing incentives to grow coffee in a biodiversity-friendly manner. One implication of our study is that plantations located at varying distances to the forest cannot be compared fairly for biodiversity friendliness by existing certification methodology. Another is that conservation of existing forests at the landscape scale is essential for maintaining higher biodiversity in coffee plantations. Incentive schemes that promote conservation of remnant forests at the landscape scale and biodiversity-friendly practices locally and that relate to coffee communities as a whole rather than individual planters are likely to be more effective.  相似文献   

10.
Abstract: Biological invaders can reconfigure ecological networks in communities, which changes community structure, composition, and ecosystem function. We investigated whether impacts caused by the introduced yellow crazy ant (Anoplolepis gracilipes), a pantropical invader rapidly expanding its range, extend to higher‐order consumers by comparing counts, behaviors, and nesting success of endemic forest birds in ant‐invaded and uninvaded rainforest on Christmas Island (Indian Ocean). Point counts and direct behavioral observations showed that ant invasion altered abundances and behaviors of the bird species we examined: the Island Thrush (Turdus poliocephalus erythropleurus), Emerald Dove (Chalcophaps indica natalis), and Christmas Island White‐eye (Zosterops natalis). The thrush, which frequents the forest floor, altered its foraging and reproductive behaviors in ant‐invaded forest, where nest‐site location changed, and nest success and juvenile counts were lower. Counts of the dove, which forages exclusively on the forest floor, were 9–14 times lower in ant‐invaded forest. In contrast, counts and foraging success of the white‐eye, a generalist feeder in the understory and canopy, were higher in ant‐invaded forest, where mutualism between the ant and honeydew‐secreting scale insects increased the abundance of scale‐insect prey. These complex outcomes involved the interplay of direct interference by ants and altered resource availability and habitat structure caused indirectly by ant invasion. Ecological meltdown, rapidly unleashed by ant invasion, extended to these endemic forest birds and may affect key ecosystem processes, including seed dispersal.  相似文献   

11.
SUMMARY

An approach to the rehabilitation of degraded community lands built on people's perceptions and traditional knowledge was developed, implemented on a small scale (6 ha plot), and evaluated in terms of economic and ecological costs and benefits over a period of 5 years in a mid-altitude (1200 m) village of Garhwal Himalaya. Rehabilitation comprised establishment of water harvesting tanks, organic management of soil, agroforestry (native multipurpose trees t traditional crops), and decision making by the whole village community. Costs and benefits under irrigated and unirrigated conditions were compared. The total cost of establishing the irrigated agroforestry system was 1.23 fold that of the unirrigated one, whereas the total benefit was 2.09 fold. The average standing above-ground biomass of the 4-year-old plantation in the irrigated agroforestry system was 11.69 t/ha compared to 8.34 t/ha in the unirrigated system. Improvement in soil properties was more pronounced in the irrigated system than in the unirrigated one. Nutrient input, an input derived largely from forest biomass, in the unirrigated system was nearly 3 times higher than that in the irrigated system. It is concluded that, considering the local and national/regional/global interests in an integrated manner, agroforestry incorporating water management would be a more effective option for rehabilitating degraded community lands than the afforestation currently being attempted by the government in the mid-altitudes of Indian Himalaya.  相似文献   

12.
Philpott SM  Pardee GL  Gonthier DJ 《Ecology》2012,93(5):992-1001
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.  相似文献   

13.
Birds as predators in tropical agroforestry systems   总被引:3,自引:0,他引:3  
Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.  相似文献   

14.
Unique components of tropical habitats, such as abundant vascular epiphytes, influence the distribution of species and can contribute to the high diversity of many animal groups in the tropics. However, the role of such features in habitat selection and demography of individual species has not been established. Understanding the mechanisms of habitat selection requires both experimental manipulation of habitat structure and detailed estimation of the behavioral and demographic response of animals, e.g., changes in movement patterns and survival probabilities. Such studies have not been conducted in natural tropical forest, perhaps because of high habitat heterogeneity, high species diversity, and low abundances of potential target species. Agroforestry systems support a less diverse flora, with greater spatial homogeneity which, in turn, harbors lower overall species diversity with greater numerical dominance of common species, than natural forests. Furthermore, agroforestry systems are already extensively managed and lend themselves easily to larger scale habitat manipulations than protected natural forest. Thus, agroforestry systems provide a good model environment for beginning to understand processes underlying habitat selection in tropical forest animals. Here, we use multistate, capture-recapture models to investigate how the experimental removal of epiphytes affected monthly movement and survival probabilities of two resident bird species (Common Bush-Tanager [Chlorospingus ophthalmicus] and Golden-crowned Warbler [Basileuterus culicivorus]) in a Mexican shade coffee plantation. We established two paired plots of epiphyte removal and control. We found that Bush-Tanagers were at least five times more likely to emigrate from plots where epiphytes were removed compared to control plots. Habitat-specific movement patterns were not detected in the warbler. However, unlike the Golden-crowned Warbler, Common Bush-Tanagers depend upon epiphytes for nest sites and (seasonally) for foraging. These dispersal patterns imply that active habitat selection based on the presence or absence of epiphytes occurs in C. ophthalmicus on our study area. Survival rates did not vary with habitat in either species. Interestingly, in both species, survival was higher in the nonbreeding season, when birds were in mixed-species flocks. Movement by Common Bush-Tanagers into areas with epiphytes occurred mostly during the breeding season, when mortality-driven opportunity was greatest.  相似文献   

15.
Menke SB  Fisher RN  Jetz W  Holway DA 《Ecology》2007,88(12):3164-3173
Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies--especially on animals--have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where introduced species will occur and how their range limits may shift as a result of climate change.  相似文献   

16.
Lach L 《Ecology》2007,88(8):1994-2004
The loss of biodiversity and associated ecosystem services are major threats posed by the spread of alien invasive species. Invasive ants are frequently associated with declines in the diversity of ground-dwelling arthropods but also may affect plants through their attraction to floral nectar and tending of hemipterans. Protea nitida is a tree native to the South African fynbos that hosts a native membracid, Beaufortiana sp., which is tended by ants. Here I compare Argentine ants (Linepithema humile) to native ants in their attraction to P. nitida inflorescences in the presence and absence of the membracid, and their effects on other floral arthropod visitors, seed set, and ovule predation. Argentine ant discovery of inflorescences increased at least 13-fold when membracids were present on the branch, whereas native ant discovery of inflorescences was only doubled by membracid presence at one site in one study year and was unaffected in the other three site-years. Excluding Argentine ants from inflorescences resulted in an increase in several arthropod taxa and potential pollinators; native ant exclusion had no positive effects. Thus the mutualism between Argentine ants and the membracid is facilitating pollinator deterrence by the ants. Though Argentine ants were not associated with a decline in P. nitida seed set or ovule predation, declines in generalist insect pollinators may have ramifications for the 83% of fynbos plants that are insect pollinated. Pitfall traps showed that Argentine ants were not more abundant than native ants in non-invaded sites. Focusing only on abundance on the ground and displacement of ground-dwelling arthropod fauna may lead to an underestimate of the effects of invasive ants on their adopted communities.  相似文献   

17.
Climate, habitat, and species interactions are factors that control community properties (e.g., species richness, abundance) across various spatial scales. Usually, researchers study how a few properties are affected by one factor in isolation and at one scale. Hence, there are few multi-scale studies testing how multiple controlling factors simultaneously affect community properties at different scales. We ask whether climate, habitat structure, or insect resources at each of three spatial scales explains most of the variation in six community properties and which theory best explains the distribution of selected community properties across a rainfall gradient. We studied a Neotropical insectivorous bat ensemble in the Isthmus of Panama with acoustic monitoring techniques. Using climatological data, habitat surveys, and insect captures in a hierarchical sampling design we determined how much variation of the community properties was explained by the three factors employing two approaches for variance partitioning. Our results revealed that most of the variation in species richness, total abundance, and feeding activity occurred at the smallest spatial scale and was explained by habitat structure. In contrast, climate at large scales explained most of the variation in individual species' abundances. Although each species had an idiosyncratic response to the gradient, species richness peaked at intermediate levels of precipitation, whereas total abundance was very similar across sites, suggesting density compensation. All community properties responded in a different manner to the factor and scale under consideration.  相似文献   

18.
Detecting habitat selection depends on the spatial scale of analysis, but multi-scale studies have been limited by the use of a few, spatially variable, hierarchical levels. We developed spatially explicit approaches to quantify selection along a continuum of scales using spatial (coarse-graining) and geostatistical (variogram) pattern analyses at multiple levels of habitat use (seasonal range, travel routes, feeding areas, and microsites). We illustrate these continuum-based approaches by applying them to winter habitat selection by woodland caribou (Rangifer tarandus caribou) using two key habitat components, Cladina lichens and snow depth. We quantified selection as the reduction in variance in used relative to available sites, thus avoiding reliance on correlations between organism and habitat, for which interpretation can be impeded by cross-scale correlations. By consistently selecting favorable habitat features, caribou experienced reduced variance in these features. The degree to which selection was accounted for by the travel route, feeding area, or microsite levels varied across the scale continuum. Caribou selected for Cladina within a 13-km scale domain and selected shallower snow at all scales. Caribou responded most strongly at the dominant scales of patchiness, implicating habitat heterogeneity as an underlying cause of multi-scale habitat selection. These novel approaches enable a spatial understanding of resource selection behavior.  相似文献   

19.
Encounter rate and task allocation in harvester ants   总被引:7,自引:0,他引:7  
As conditions change, social insect colonies adjust the numbers of workers engaged in various tasks, such as foraging and nest work. This process of task allocation operates without central control; individuals respond to simple, local cues. This study investigates one such cue, the pattern of an ant's interactions with other workers. We examined how an ant's tendency to perform midden work, carrying objects to and sorting the refuse pile of the colony, is related to the recent history of the ant's brief antennal contacts, in laboratory colonies of the red harvester ant, Pogonomyrmex barbatus. The probability that an ant performed midden work was related to its recent interactions in two ways. First, the time an ant spent performing midden work was positively correlated with the number of midden workers that ant had met while it was away from the midden. Second, ants engaged in a task other than midden work were more likely to begin to do midden work when their rate of encounter per minute with midden workers was high. Cues based on interaction rate may enable ants to respond to changes in worker numbers even though ants cannot count or assess total numbers engaged in a task. Received: 1 July 1998 / Accepted: 15 November 1998  相似文献   

20.
抚育间伐对栓皮栎种群空间分布格局的影响   总被引:1,自引:0,他引:1  
抚育间伐是一种重要的改善林木生长条件的经营措施,对林分结构和动态具有重要影响。为研究抚育间伐对林木种群空间结构与格局影响的内在机制,以间伐和未间伐的栓皮栎人工林为研究对象,通过设置2个100 m×100 m样地并进行每木定位和调查,在采用径级结构代替年龄结构方法将栓皮栎种群划分为幼树(2 cm≤DBH<5 cm)、小树(5 cm≤DBH<13 cm)和大树(DBH≥13 cm)3个生长阶段的基础上,分别采用Ripley’s K函数衍生的g(r)函数和双变量g12(r)函数,对栓皮栎种群空间分布点格局及不同生长阶段栓皮栎种群之间的关联性进行了研究。结果表明,间伐和未间伐样地栓皮栎种群空间分布点格局分别在0-16 m和0-33 m距离尺度内呈聚集分布,而分别在大于16 m和33 m距离尺度内呈随机分布;间伐和未间伐样地栓皮栎幼树、小树和大树的株数比分别为8?741?699和261?1134?683,且间伐样地栓皮栎幼树、小树和大树种群分别在0-14、1-16、0-6 m距离尺度内呈现均匀或聚集分布,而在其他距离尺度上表现为随机分布;栓皮栎幼树、小树和大树之间仅在间伐样地0-6 m距离尺度内呈现一定的相关性,而在未间伐样地更大的距离尺度内有显著的关联性,如栓皮栎幼树和大树之间在6-38 m距离尺度上呈显著正相关。因此,抚育间伐一定程度上使得栓皮栎种群在更大距离尺度上呈现出随机分布状态,并弱化了不同生长阶段的林木栓皮栎种群的关联性,这调整了栓皮栎种群空间竞争关系,有利于大径级林木个体的培育。该研究可以为开展抚育间伐对林木种群的影响的研究提供理论依据,也可以为制定科学合理的抚育技术措施提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号